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NOTATION

English Letter Symbols

a radius of probe

A area

Acol area of collector disc

A area of sheath
a

B magnetic induction

c local sonic speed

c thermal velocity

d radial distance

d diameter of parachute
para

D diffusion coefficient

e electron charge

er' ee unit vectors (Figure 11)

E electric field

f dimensionless stream function

g stagnation point inviscid flow velocity gradient

I current to the probe's collector disc

j current density

jr random current density

k Boltzmann's constant

1 characteristic length
p

L diameter of probe

L characteristic length of mobilitymob

L length parameter of the probe

L length parameter of the return electrode

x



English Letter Symbols (cont'd)

m particle mass

M Mach number

n number density

N neutral gas density

p neutral gas pressure

q flow velocity vector

r radial distance

R radius of probe

RCal resistance of the calibration resistor

Rd diffusion Reynolds number

Re Reynolds number

2
Res = ga

v

R = D

D
i

s transformation independent variable

S sheath thickness

Sc Schmidt number

T temperature

u flow velocity in x direction (Figure 4)

ub viscous boundary layer edge 4elocity in x direction

U free stream velocity

v flow velocity in y direction (Figure 4)

vd drift velocity

v1 particle velocity in the plane perpendicular to B

V electrical potential

V plasma potential

xi



English Letter Symbols (cont'd)

Vf floating potential

w diffusive flow velocity

x, y coordinates (Figure 4)

Z number of electron charge

(Af/At)cal slope of the preflight calibration ramp

(Af-/At)data slope of the in-flight data waveform

Greek Letter Symbols

XD
L

Di

De

6 boundary layer thickness

A dimensionless sheath thickness

Ti
E: T

e

T) viscous boundary layer coordinate

y radial distance

yr Larmor radius

0 angle (Figure 11)

n-o
n
eo

AD Debye length

Smean free path for neutral-species s collisions
:s-n

mobility

)V kinematic viscosity

xii



Greek Letter Symbols

v electron-neutral collision frequency
a

p neutral gas density

a conductivity

V
V w

U dimensionless electrical potential due to applied
app

field

u dimensionless electric potential due to space

charges

dimensionless stream function

dimensionless electric potential

Subscripts

A evaluated at the outer edge of the convection-

mobility dominant region

B evaluated at the inner edge of the convection-

mobility dominant region

C evaluated at the inner edge of the mobility layer

col refers to electron

e refers to electron

i refers to ion

n refers to neutral

s refers to species s

w evaluated at the probe surface

Sevaluated at the outer edge of the collisionless

surface layer

xiii



Subscripts

+ refers to positive ion

- refers to negative ion

o evaluated at the free stream state
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ABSTRACT

Blunt probe theory for subsonic flow in a weakly ionized and

collisional gas is reviewed, and an electron collection theory for

the relatively unexplored case, XD/L - 1, which occurs in the lower

ionosphere (D-region), is developed.

It is found that the dimensionless Debye length (XD/L) is no

longer an electric field screening parameter, and the space charge

field effect can be neglected. For ion collection, Hoult-Sonin theory

is recognized as a correct description of the thin, ion density-

perturbed layer adjacent to the blunt probe surface.

The large volume with electron density perturbed by a positively

biased probe renders the usual thin boundary layer analysis inappli-

cable. Theories relating free stream conditions to the electron

collection rate for both stationary and moving blunt probes are

obtained. A model based on experimental nonlinear electron drift

velocity data is proposed. For a subsonically moving probe, it is

found that the perturbed region can be divided into four regions

with distinct collection mechanisms. Since Ae-n > L/w, the diffusion

layer concept is irrelevant for electron collection, and is replaced

by a collisionless layer. The electron current expressions for both

stationary and moving probes are found to be approximately identical.

The electron density predicted by this analysis is lower in magnitude

than the earlier calculations below 60 km, and is found to be higher

above this altitude. This continuum theory is valid up to 80 km.

xv



CHAPTER I

INTRODUCTION

1.1 Preface

The ionosphere is the region above the earth's standard atmosphere

where ions and electrons are dense enough to affect the propagation of

radio waves. The symbols D, E, Fl and F2, as shown in Kgure 1, are

used to distinguish its various parts. The present work is concerned

with probing the composition of D-region, the lowest part of the iono-

sphere.

The D-region, characterized by its relatively high ambient neutral

gas density and the presence of the negative ions, extends nominally

from 50 km to 80 km in altitude. In the pursuit of a better under-

standing of the chemical composition of the ionosphere, the D-region

has been energetically explored by various aeronomy groups. Typical re-

cent investigations have considered the pronounced diurnal variation of

the D-region ionization in Winter (1), sunrise effect on the D-region

photochemistry (2), and the relationship of the D-region absorption to

stratosphere warming (3).

Both ground-based and rocket-borne propagation experiments have

been used for the experimental study of the D-region. However, such in-

vestigations give only a measurement averaged over a large volume of the

medium being studied (4). As an example of the alternative local mea-

surement by flying a Gerdien Condenser probe subsonically and supersoni-

cally (5) has been attempted. The electron density can be obtained from

2 -i
conductivity (a) measurements in standard fashion: a = neoe (2 mee )

where neo is the ambient electron density, e is the electron charge, me
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is the mass of electron, and v is the electron collision frequency.
e

Conductivity is measured by applying a small voltage across a suitable

electrode system (e.g., the Gerdien capacitor arrangement), and mea-

suring the resulting currents. Beginning for a zero voltage reference,

the voltage-current characteristic shows a slope proportional to the

charged particle mobility. At high electric fields, where all the par-

ticles entering are collected, a saturation would be expected; however,

in some cases, no saturation region was found (6) for reasons which are

not clear. Also, this type of device is aspect sensitive and the effect

of shock waves produced needs further investigation.

The local charge density can also be found by measuring the current

to an electrostatic probe. Basically, an electrostatic probe is merely

a small metallic electrode (a wire or a surface) inserted into a plasma

(ionosphere). By biasing the probe potential positive and negative re-

lative to the plasma, and measuring current collected, one can obtain

information about the conditions in the plasma. However, the presence

of the probe in the plasma perturbs the local composition and to relate

the current collected and ambient condition is a fairly difficult under-

taking. This task is the goal of the present work.

1.2 Subsonic Blunt Probe

The standard D-region ion and electron collection subsonic electro-

static probe theory and instrumentation were presented by Hale and

Hoult in 1965 (7). The actual experiment employed a parachute-borne

blunt electrostatic probe which was flown by a meteorological rocket,

ejected, and descended from 90 km to 45 km with an average terminal

speed of 100 m/sec. The voltage-current characteristics relates the
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current collected to the ambient charged particle density. This simple

device has the advantage that its planar configuration is easy to con-

struct, and the probe being facing earthward and covered by the para-

chute above is shielded from solar radiation. The subsonic blunt

probe system is better than a supersonic probe, because the 
latter can

drastically affect the composition of the medium through shock waves

which are yaw-dependent.

In addition to earlier blunt probe data, another eleven rockets

have recently been fired by the Ionospheric Research Laboratory in The

Pennsylvania State University over the period of October 1971 to

February 1972. With such a body of experience, it is reasonable to con-

clude that the experimental technique has been thoroughly examined and

well understood. The interpretation of electron collection data, how-

ever, requires further investigation (8), and will be the primary con-

sideration here.

The intent of the present work is to critically review past D-

region subsonic blunt probe theory for ion collection (negatively based

probe), and to find a new analytic electron collection theory (posi-

tively biased probe). This new theory will then be used to interpret

the available blunt probe data.
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CHAPTER II

REVIEW OF RELATED PROBE WORK

2.1 Fundamental Concepts

It is appropriate to begin with a discussion of the general re-

sponse of a plasma in the presence of a stationary biased probe. A

typical current-voltage plot is given in Figure 2. The general shape

of the curve, but not absolute values, is relatively the same for var-

ious probe geometries at different plasma pressures. The probe is at

the same potential as the plasma at the point V s. There is no poten

tial difference between the probe and plasma at this point, and the

charged particles migrate to the probe at thermal velocity. Electrons,

being faster, are the dominant contributor of the current collected by

the probe.

When the probe is made positive relative to the plasma, electrons

are attracted while ions are repelled. Therefore, near the probe sur-

face that is an excess of negative charge, which builds up until the

total charge is equal to the virtual positive charge on the probe.

(Notice that this phenomenon will happen only when the density of the

charged particles in the plasma is dense enough.) This layer of

charge imbalance will shield the rest of the plasma from the influence

of the probe. This region, where most of the potential drop occurs,

is called the sheath. The electron current is that which enters the

sheath through random thermal motion; and since the area of the sheath

changes little with the probe potential, the probe characteristic here

(portion A) is more or less flat. This is called the region of satura-

tion electron current.
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If the probe is made negative relative to Vs, electrons will begin

to be repelled and ions accelerated. The electron current falls dras-

tically as V , the probe potential decreases. This region (portion B)

is called the retarding-field region of the characteristic. Finally,

at point Vf, called the floating potential, the probe is sufficiently

negative to repel all electrons except a flux equal to the flux of ions,

and, therefore, draws no net current. At large negative values ofVw,

all electrons are repelled and an ion sheath is formed on the probe sur-

face. The current collected is the saturation ion current (portion C).

The thickness of the sheath is an index of the effectiveness of

the plasma shielding effect, and is measured to be typically on the 
or-

der of a few Debye lengths, XD; this parameter is normally drawn from

an analysis when the body is stationary and its size is reduced to zero

(9). Electric field distribution inside the sheath is governed by a

Poisson equation. When the charge density is sufficiently low and

applied potential is high enough, the space charge effect can be ne-

glected and the sheath per se can be said to no longer exist. Theory

based on this approximation is referred to as the zero space charge

theory.

The exact relationship between the plasma parameters and the probe

characteristic depends on the geometry of the probe, and the relative

magnitudes of the collision length, the probe dimensions, and the Debye

length. Clearly, the probe characteristic of a moving probe will differ

from that of a stationary probe.



2.2 Theories Including Space Charge Effect

2.2.1 Stationary Probe

For the case of low pressure, the interaction problem of a

stationary electrostatic probe was first treated in detail by Mott-

Smith and Langmuir. Their solution can also be found in Chen (10).

They assumed that the sheath layer surrounding the probe can be

approximated by one which has a sharp outer edge, outside of which the

potential is that of the plasma. When the sheath is thin compared to

the probe radius (XD<<R), every attracted charged particle that enters

the sheath will be collected, and current is given by

I jrs (2.2.1)

where As is the area of the sheath, jr is the random current density

crossing a unit area in one direction. For a Maxwellian velocity dis-

tribution, this is given by

Jr 4 noC (2.2.2)

where c is the random velocity of the attracted particles, no is its

number density outside the sheath. Notice that jr depends on no which

is usually unknown, while As changes with different probe potential for

a cylindrical or spherical probe. For a planar probe, As is a constant

(see Eqs. 29, 30 and 31, p. 1279, ref. 10).

When the sheath is thick compared to probe radius (XD>R),

not all particles entering the sheath will hit the probe because of the

possibility of orbital motions. The law of conservation energy and

angular momentum have to be included in the analysis. It was found that



the saturation electron current varies with V for spheres and as V 1/2

for cylinders (Eqs. 52 and 53, p. 130, ref. 10); it does not change for

planes since no orbits are possible and the sheath area is again con-

stant.

The Langmuir theory mentioned above has two limitations.

First, the collision length between the attracted charged particles and

the neutrals must be larger than the sheath thickness or the probe

radius, which ever is shorter. Otherwise, in the presence of collisions,

the probe current will depend also on the transport coefficients of the

plasma (e.g., diffusion coefficient). Second, the probe current is

solved in terms of two unknowns, the ambient number density of the

attracted charged particles and the sheath thickness. There is only

one unknown (no) in the thick sheath case (10). In the thin sheath

case, the sheath thickness has to be determined independently. This

problem was solved by Bettinger and Walker (11) for a spherical probe.

In that case, the nondimensional sheath thickness (A) was given by

A= 0.83 ps1 / 3 O1/2 (2.2.3)

w eVw

kT (2.2.4a)

R
Ps (2.2.4b)

A D 
(2.2.4c)

where S is sheath thickness, AD is the Debye length, R is the probe

radius, Vw is the probe potential, e is the electron charge, k is the

Boltzman constant, and T is the temperature of the attracted particles.
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At high pressure, the first limitation mentioned above re-

lating to collisionless sheath is not satisfied. Here, the minimum

practical probe radius (so that the probe will not melt) and the sheath

thickness are both larger than the mean free path for the attracted

particle-neutral collisions. Su and Lam (12) solved this problem and

developed a continuum theory of a stationary spherical electrostatic

probe. For the Debye length much less than the probe radius (thin

sheath), their analysis identified four distinct regions, they are:

the quasi-neutral, the transitional, the ion-sheath, and the ion-

diffusion region. In the latter two regions, the Boltzman electron

density distribution is not a valid description; as it was shown that

the effects of electrons in these regions are completely negligible.

For probes of more moderate size compared to the Debye

length, Su and Lam present a numerical solution. To remove an insta-

bility in the numerical integration, a third order term which was re-

sponsible for the existence of the ion-diffusion layer was neglected.

The error introduced was estimated to be of order of Te /Ti which is

generally very small in many plasmas. In the D-region, however, Te/ i

is of order unity. Cicerone and Bowhill (13) in their attempt to find

a continuum probe theory in the D-region, repeated the numerical inte-

gration with the third order term mentioned above included. The result

shows that the approximation introduced by Su and Lam appreciably affects

the V-C characteristic of the probe.

In the transition regime (intermediate pressure), Talbot and

Chow (14) gave an approximate analytic analysis of the effects of colli-

sions on ion saturation and electron current for both cylindrical and



spherical negatively biased probes. This was accomplished by using the

Bernstein-Rabinowitz (15) and Laframboise (16) results and the Su-Lam

(12) and Cohen (17) results to evaluate certain integrals which appeared

in the analysis in the collisionless and continuum limits, respectively.

They then use an interpolation formula to span the transition regime

between these limits. Their results have:been found to compare favor-

ably with experimental results (14).

2.2.2 Moving Probe

The superposition of a directed plasma motion toward a probe

will destroy the symmetry of the plasma sheath with respect to the probe.

The electric field of the sheath will no longer be a central force sys-

tem. This undesirable feature allows solution only in very special

cases.

Again, treatments for a moving collisional probe and a mov-

ing collisionless probe are completely different. By a collisional

probe, one means that X s-n<<L, where X is the mean free path fors-n s-n

species (s) - neutral collisions, and L is the characteristic length of'

the probe. This, of course, also includes the case where there is a

collisionless sheath on the probe surface with a collisional region out-

side. A collisionless probe implies that X sn>>L. Notice that thiss-n

does not include the possibility of having a viscous boundary layer of

the neutral flow since usually X <<X , where X is the neutral-n-n s-n n-n

neutral mean free path. However, the fact that X s>>L implies that the
s-n

effect of the neutrals on the species (s) is small, the viscous bound-

ary-layer effect on the charged particles do not have to be considered.
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Using a wave mechanical approach, Chmielewski (18) solved

the collisionless slowly drifting, spherical (both positively and nega-

tively biased) probe problem by a perturbation method. The speed ratio

(U/Ei) is used as the small perturbation parameter. The result shows

that only a small effect on the stationary probe characteristic is ex-

pected when a slow plasma drift is imposed (19). Physically, this is

reasonable, since the electrostatic field effect on the sheath struc-

ture is large compared with a small flow perturbation. Also the cur-

rent collected by the sphere is the average of the current to the up-

stream and downstream sides of the probe; the local current perturba-

tion on both sides tend to cancel each other.

For the case of a collisional moving probe, a brief review

of the present knowledge on this subject is as follows. For an ion

collecting (negatively biased) probe moving in a collisional medium,

two important parameters are involved. They are the nondimensional

Debye length (XD/L) and Reynolds number (Re), where

D = [kTe/(4 eo e2)] /2, Re = UL v , and v is the kinematic viscosity

of the neutral gas. These two parameters are associated with the rele-

vant highest order derivatives.(this will be shown in a later chapter)

in the system of governing equations. It is, therefore, logical to ex-

pect that there will be two singular perturbations in the problem: one

for the viscous layer, associated with the Reynolds number, Re, and an-

other for the sheath, associated with the Debye length parameter XD/L.

The nature of the problem depends on the relative ordering

of these two parameters. When ADL-1 << Re-1/ 2 <<1, physically the in-

equality implies that the sheath is thin compared with the viscous
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boundary layer. This allows neglecting convection within the sheath.

The resulting ion flow in the sheath can be treated as one dimension-

al, which is crucial insolving the sheath equation. Also, this con-

dition will automatically only allow a moderate probe potential to be

considered, since a strong probe potential will give a thick sheath.

When the inequality is not satisfied, the sheath can be thick and the

problem of convection within the sheath has to be properly taken into

consideration.

First, the case when the sheath is imbedded inside the vis-

cous boundary layer (XDL-1 << Re-1/ 2 << 1) will be considered. Talbot

(20) developed a theory for a collecting electrode placed at the stagna-

tion point of a blunt body immersed in a supersonic partially ionized

stream. He assumed a thin collisionless sheath inside the viscous

stagnation boundary layer. Inside the sheath, the current density is

given by the Langmuir probe theory. Outside, the ion-electron pairs

diffuse together relative to the neutral gas. The behavior here is

governed by an equation consisting of an ambipolar diffusion term (to be

discussed later) and the convection term.

When there are a considerable number of collisions inside

the sheath, Lam (21) developed a continuum, incompressible analytic

solution to a blunt probe in a plasma which consists of positive ions and

electrons. He assumed that the viscous boundary layer thickness (Re)- 1/2

is much larger than the sheath thickness (XD/L). Outside the electric

boundary layer (a layer where electrical effects are dominant) and which

is assumed to be of the same order of thickness as the viscous boundary

layer, the number density of the charged particles is unperturbed.
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Inside, it is further split up into two layers. The upper inner layer

is an ambipolar diffusion layer where a quasi-neutral conditions

(ni M ne) holds. Here, physically the slower ions retard the diffusion

of the electrons by setting up an electrostatic field. Thus electrons

and ion diffuse together; this is called the ambipolar diffusion. In

the lower inner layer, adjacent to the probe surface, free diffusion

and field effects are dominant. Closed form analytical results were

obtained for the floating potential and the current-voltage character-

istic. It is interesting to compare the sheath thickness, S, found in

Lam's work (S E1/6 A 2/3 where E = Ti/Te) to that found by Bettinger

and Walker (11) for a collisionless stationary probe

2/3 1/2 1/3 eV(S = 0.83 A D/ w / R where w = k-T and R is the probe radius).
e

The sheath thickness in two case bears the same relationship to the De-

bye length.

Lam's theory was extended to plasma consisting of positive

ions, electrons and negative ions by Touryan and Chung (22). They con-

cluded that only when the temperature of the electrons and the ions are

the same can. the sheath equation can be numerically integrated. The

solution found for a flat plate shows that the electron saturation cur-

rent is suppressed by the presence of negative ions while the positive

ion saturation current is slightly increased. For a higher negative ion

mobility, the above effects are increased.

The difficulty of unequal electron and ion temperatures was

solved numerically by Bailey and Touryan (23) for a flat plate. Results

were obtained for both electron attracting and retarding fields over a

larger range of applied probe potentials. By working with the governing
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equations for the entire region rather than two sub-regions (ambipolar

and sheath), one could minimize problems in numerical instabilities (in

computing the sheath) and avoid the cumbersome task of asymptotic match-

ing of two regions with two or more parameters. The results show that

for Te/Ti > 1, the sheath plays a much greater role in determining the

ion saturation current than when the flow is in thermal equilibrium with

Te = Ti'

Secondly, the case when the sheath is not thin compared to

the viscous boundary layer is considered. Johnson and DeBoer (24) de-

veloped a theory for the electric boundary layers that form on flat-

plate and cylindrical probes aligned parallel with a high speed flow,

when the probe potential is large and negative. They assumed that the

1/2
nondimensional potential (w) and the parameter, R i (4w) were in-

w 1

finitely large, where R = UAD D , and D is the ionic diffusion co-

efficient. This assumption makes it possible to neglect derivates

with respect to flow direction, compared with corresponding derivatives

with respect to normal direction, y. The expression obtained for the

sheath thickness (S) at sufficiently far downstream of a flat plate is

S = /4 x 1/4 A 1/2 D 1/4 u-1/4 w 1/2 (2.2.5)
2 D i w

Thus the sheath thickness varies with X 1/2, grows further downstream

(x /4 ) due to the ion supply by convection, and it is also a function

of the nondimensional potential 4wI/ 2 since 4w is large in the present

case. The sheath thickness for the cylindrical probe cannot be explic-

itly expressed. The numerical solution shows that for given flow con-

ditions and electrode potentials, the flat plate sheath is thicker than



16

the equivalent axisymmetric sheath. This is due to the better shield-

ing of the cylindrical case which results from the convergence of the

ion streamlines on the probe.

2.3 Theories with No Space Charge Effect

Hoult (25) derived a continuum subsonic probe theory for the D-

region where the charged particle density is very low. He made two

physical assumptions. The first is that the charged particle density

of the plasma is low enough that the space charge electric field is

small compared with the applied field. The field then is simply the

electrostatic field in a vacuum. This condition decouples the species

conservation equations and allows each species to respond independently.

Paired diffusion (ambipolar diffusion) naturally no longer exists. He

further assumed that the convection term to be completely dominant un-

til very near the probe surface. It was concluded that the charged

particles density is perturbed only very near the wall; this layer was

called the diffusion layer. Inside the diffusion layer, the free dif-

fusion term and the mobility term govern the dynamics of each species.

For a collecting disc, the positive current to a highly negatively

biased probe was given by

eV
- 2 w 1

I - (en U 7rr 2 ) -) ( ) (2.3.1)

where n+o is the free stream positive ion density, U is the free stream

velocity, Vw is the probe potential, Rdi is the ionic electrical Rey-

-1nolds number (ULD1 ), and Di is the ionic diffusion coefficient. A

similar result is obtained for a highly positively biased probe.
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Sonin (26) accepted the first assumption of Hoult, discarded the

second, and did a complete analysis for ion collection of a supersonic

rocket-borne blunt negatively biased probe. The details will be de-

scribed in Appendix A. In two extreme cases, strongly attracting

field and weak field, the current expression is identical to the ex-

pression derived by Hoult for the subsonic probe at a high electric

field.

2.4 Discussion

The review of the above theories leads to the conclusion that the

solvability of the above mentioned plasma-probe interaction problems

depend on two factors: the probe geometry, and the ability to predict,

at least the order of magnitude of, the physical quantities like Te

and N in the neutral plasma even before the problem is solved.eo

With the simple geometry like Walker and Bettinger's stationary

collisionless spherical probe (11), Chmielewski's slowly drifting col-

lisionless spherical probe (18), and Bailey's moving collisional infi-

nite planar probe (23), all the physical quantites depend only on one

coordinate (radial distance (r) for the former two, and the boundary

coordinate (n) for the last case). This simplification allows a com-

plete numerical solution without making any assumption.

When the geometry is not simple, a prior knowledge of the order of

magnitude of the physical quantities in the neutral plasma is required.

This is explained as follows. In the sheath-edge approach, the Debye

length, the usual sheath thickness representative length scale, is

needed to determine whether the sheath is thin (space-charge limited)
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or thick (orbital limited), and whether the sheath is collisional or

collisionless, so that the corresponding treatment is used. On the

other hand, when a boundary layer analysis is possible and used, the

ordering of the relative parameters (XD, Re, Rd) also require the know-

ledge of the Debye length. A prior estimation of the plasma's physi-

cal quantities is needed to determine the size of the Debye length.

With the nondimensional probe potential (4) , much smaller than

unity or with local thermodynamic equilibrium (27), the sheath thick-

ness for a collisionless infinite planar probe and spherical probe is

well represented by the Debye length (28). Local thermodynamic equili-

brium means that sufficient collisional interchange of kinetic energy

takes place over a length that is small as compared with the local

linear scale of field and medium. Thus Talbot's (20) collisionless

sheath thickness can be represented by the Debye length only when

4w << 1. For a moving collisional probe , one can generally expect that

the sheath thickness will not depend on the free stream velocity unless

the sheath is thick compared with the viscous boundary layer. In gen-

eral , the sheath thickness is a function of the free stream velocity ,

U, the probe potential , 4w, and the Debye length , XDo

For a moving blunt probe operating in the D-region of the ionos-

phere , the analysis of Lam (21), and Touryan and Chung (22) cannot be

used, simply because the assumption XDL-1 << (Re)-1/2 is not satisfied.

The neglect of the convection term in Hoult's zero space charge theory

needs further justification. Hoult's tactful assumption that the per-

turbed region is confined to the thin diffusion layer, which is crucial

for the application of his boundary layer analysis, is questionable in
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general. For ion collection, Sonin's analysis included the convection

term, and seems to be a more complete formulation of the problem. How-

ever, the absence of any sheath allows the electric field to extend a

large distance from the probe surface. Regarding the present problem,

this fact, together with the electron's small mass and high mobility,

can.be expected to result in a large effective collecting surface far

away from the probe for electrons. Such an approach results in a large

perturbed region, and an analysis completely different from Hoult's will

be required. It is interesting to note that few laboratory experiments

have been conducted for electron collection in a collisional plasma.

This is simply due to the difficulty that a positively biased probe will

greatly disturb the small volume of plasma generated in the laboratory.

Before proceeding with the solution of the problem at hand, it will

be noted that a complete review of the electric probe theory has recently

been made by Chung, et al. (29). They systematically discussed the past

probe theories in continuum, transitional, and collisionless regime.

Their work should be referred to for a better understanding of the pre-

sent state-of-the-art of electric probes.
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CHAPTER III

BASIC PARAMETERS AND EQUATIONS FOR A D-REGION BLUNT PROBE

3.1 The Composition of the D-Region

The charged particle constituents in the D-region are of interest

here. In the normal day time D-region, the primary positive ions were

theoretically expected to be NO, 02 , and N2  (30). The N2 ion can

be removed very rapidly by charge exchange with 02 to form 02+ , which

in turn charge exchanges with NO to form NO+. Thus NO+ was suspected

to be dominant in the D-region. However, recent in situ measurement

(30, 31) of the D-region positive ion composition showed that water

derived ions of mass 19 (H30+), 37 (H502+) and 55 (H703
+ ) predominated

below 82 km in the undisturbed D-region, while NO+ and 02 are the

major ions above this altitude. To account for these hydrated ions,

attempts to find a chain reaction starting with the primary ions 02

and NO+ , leading rapidly to the water clusters are underway. Consid-

erable success in explaining 02+ composition has been made, while NO+

is still under investigation. At present, it is generally accepted that

the hydrated ions are the major positive ions in the D-region (32).

Initially, it was believed that 02 was the principal negative ion,

since 02 is a major neutral constituent and N2 does not form a stable

negative ion. Some doubt was introduced, when the early observation of

the twilight variation of the "polar cap absorption" events showed that

the primary response of the D-region was to UV, rather than visible

light to which 02 will undergo photodetachment. Flowing afterglow

studies (33, 34) led to the conclusion that NO3 - and its hydrates should

be the dominant negative ion and recent observation by Narcisi, et al.
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(35), are consistent with this for a normal D-region. The rocket-

borneradio wave absorption experiment by Aikin (36) shows that nega-

tive ions can be neglected above 70 km during the day in the D-region.

3.2 Physical Quantities of the Medium

Three quantities, the mean free path, thermal velocity, and the

temperature are considered here.

The elastic cross sections, a, listed in McDaniel (37), are used

to compute the mean free path of neutral-ion collisions and neutral-

neutral collisions. The lack of data for the hydrated positive ions

(H5 02 +) required the use of a for 02+; this is believed to be a good

estimation since the difference of their masses is small. For the com-

putation of the mean free path for electron-neutral collisions, Ben-

son's (38).expression for the collision frequency of electron in the

D-region is used. The resultant expressions are as follows:

1.3 x 10
i-n = 1 (3.2.1)
i-n N

1.6 x 1014
Sn-n (3.2.2)

A = C (3.2.3)
e-n 8.4 x 10 p

where sn (cm) is the mean free path of the collision between thes-n

-3
species, s, and neutral, n, N is the neutral gas density (cm ), p is

the neutral gas pressure (mm Hg, and Ce is the thermal velocity of thee
-1

electron (cm sec ). The results are presented in Table 1.

Due to the scarcity of charged particles in D-region, collisions

between these species are rare. The mean free path, Ae-i' is estimated

to vary between 105 cm to 107 cm in the D-region.
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Table 1

The Mean Free Path of Charged Particles in the D-Region

Altitude The Mean Free Path for Collisions between

Electron-Neutral Neutral-Neutral Ion-Neutral
km cm cm cm

90 90 2 1.6

80 20 .56 .455

70 4.2 .082 .067

60 1.2 .024 .020

30 .32 .0082 .0067

40 .08 .0032 .0026
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The abundance of collisions between charged particles and neutrals

results in good thermal contact between species. Thus, all charged

particles and neutrals are taken to have the same temperature. The

temperature varies between 200*K to 270*K in the D-region. Using an

average temperature of 230°F, the average thermal velocity, C which is

defined as [8kT / (s )1/2 are Cn = C 4.7 x 10 cm sec-1 , and
6 -1

Ce = 9.5 x 10 cm sec , where C is the thermal velocity, subscripts n,

i, and e denote neutrals, ion, and electron, respectively.

3.3 Magnetic Field Effect on Probe

The influence of the earth's magnetic field on different processes

in a plasma is characterized by the Larmor radius, yL' which is defined

by L = ms vs (eB)-1, where ms is the mass of t1i species, s, and vIs
is the velocity in the plane perpendicular to the magnetic induction,

B. When the magnetic field is weak enough so that the Larmor radius is

large compared to length scale of the plasma region perturbed by the

probe, the current to the probe is not affected. On the contrary, when

the Larmor radius is comparable to or smaller than the relevant dimen-

sions, the current to the probe is affected. Usually, the rms speed

(3kT m -1 1/2 is a good approximation for vls. According to Alpert et

al. (39), B is approximately 0.5 Oersteds below 100 km, thus the Larmor

radius of electrons and ions are as follows:Y Le 1 cm, and YLi - 200 cm.

For ion collection, both the probe diameter and the perturbed length

scale (which is later found to be L Rd-1/2) for a negatively biased

probe is smaller than YLi, so that the magnetic effect can be neglected.

However, this conclusion is not so obvious for electron collection

(positively biased probe). Above the altitude 60 km, the Larmor radius
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is shorter than both the mean free path of electron-neutral collisions

and the perturbed characteristic length (which is later found to be

Ow L ($Rd)-/2 ); thus the electron current process would be expected to

be affected by the magnetic field. Below 60 km, the Larmor radius is

larger than the mean free path of electron-neutral collisions, 
and it

is questionable that the Larmor radius is still a characteristic

length scale in the same sense noted above; thus this effect will be

neglected here.

3.4 Interaction of a Biased Probe with the D-Region Plasma

A charged body in a plasma attracts charges of opposite sign; thus,

the net active charge is reduced with distance away from the probe and

this effect leads to screening. The Debye length is generally used to

represent this screening distance, within which the electric field is

significant. The usual derivation of the Debye length is outlined as

follows:

Consider a sphere of radius, R, and charge, Ze , at rest with re-

spect to a plasma containing, per unit volume, in its undistributed

-l
state: neo electrons of charge, -e, and nio neo Zi  ions of charge,

Zie. The potential distribution is governed by the Poisson equation in

spherical coordinates as

1 d (y2 4 4Te2 ( - zi T) (3.4.1)
dy 2dye

where y is the radial distance, V is the potential and He and n+ are

respectively the electron and ion density at distance, y. Now assuming

local thermodynamic equilibrium, the distribution of particles in the

potential field is given by
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n. -n exp (4) (3.4.2)
a eo

+ (neo / Zi) exp (-Zio) (3.4.3)

where * is the nondimensional potential defined as eV/(kTe). For

Zi = 1, the exponential functions in Eqs. (3.4.2) and (3.4.3) are ex-

panded in series. Combining Eqs. (3.4.1 - 3.4.3), Eq. (3.4.1) becomes

1 d 2 dV 2.. 1 eV ..
y 4 re be 2 V + +eV +

S dy dy o kT 3 kT

(3.4.4)

with the boundary conditions

V (y -Y ) - 0 (3.4.5a)

1
V (y R) = Vw  --'- (3.4.5b)

Consider the special case when we have

<< (a)

With the exception of the first term, other terms in the R.H.S. of

Eq. (3.4.4) can be neglected and its solution is

V VR exp [-21/2 (y-R) XD- 1  (3.4.6)
w7 D

where

(kT 1/2

eo
XD Av4e2 n o (egs) (3.4.7)
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Now, at the distance of one Debye length from the surface, the potential

is given by

V(R+ A V R exp (-21/2) (3.4.8)

Combining the inequality (a) and Eq. (3.4.8), we have

kTR ke 1/2
R << - exp (2 ) (b)

The inequality (b) and the local thermodynamic equilibrium are two pre-

requisite conditions for Eq. (3.4.6) to be a valid description of the

potential distribution. To satisfy the inequality (b), it requires

either the size of the sphere (R) is infinitesimally small or #w << 1

for a sphere of arbitrary size. According to Opik (27), the requirement

of having local thermodynamic equilibrium over the decay length has a

bearing only for large values of 4; for small values the state of equili-

brium is irrelevant. It is obvious that the Coulomb field is essential-

ly damped for (y-R )> XD. For this reason, the Debye length is used as

the screening distance of a charged body. Assuming the electron num-

-3 -3ber density in the D-region is about 1000 cm at 80 km and 100 cm at

50 km, the Debye length is 3 cm at 80 km and 12 cm at 50 km.

In the D-region, the average temperature of the electrons is

approximately 2300 K; this is one order of magnitude less than the plasma

electron temperature (30000 K) usually considered in analysis. With this

low temperature, and the available data on potential at which blunt

probe measurements were made, it is found that the assumption 4w << 1

cannot be satisfied throughout the D-region. Accordingly, the use of

the Debye length as an indicator of screening (sheath) thickness is at
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best approximate here, since the experiment does not meet the assump-

tion of the derivation. It is natural, at this stage, to speculate

that the screening distance will be a function of XD and V . However,

a basic question to investigate, as will be done in section 3.6, is

whether the concept of a screening distance (sheath) is appropriate in

the present problem.

In the study of the transport of the particles to the biased probe

at rest, the concepts of drift velocity and diffusiof are involved.

For a weakly ionized plasma, each species of charged particles inde-

pendently diffuses through the neutral gas. The diffusive motion is re-

tarded by random collisions with the gas molecules. This diffusive

flow, which due to a gradient in a composition, can be superimposed on

other types of flow which might be produced by external fields or by

gradients in the total pressure. The diffusive flow velocity w is given

by

-D
w = - Vn (3.4.9)

n

where Vn is the gradient of the number density, n, of the diffusing

particles, and D is the diffusion coefficient of species s, which is a

joint property of the particles and the medium through which they are

diffusing.

When an ion moves through a gas under the influence of a static

uniform electric field, E, the ionic motion consists of a slow uniform

drift in the field direction superimposed on the much faster random mo-

tion. For E/P small and constant, the drift velocity of the ion, VD,

is
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VD = JE (3.4.10)

where ~, the constant of proportionality, is called the mobility of

the ions.

Now, consider a cloud of charged particles diffusing through a uni-

form gas, and we apply an electric field in the opposite direction of a

strength to balance the tendency of diffusion. Thus, equating the two

velocities (w, VD) and assuming that the ions are in thermal equilibrium

with gas, one obtains the Einstein relation

L e
D kT (3.4.11)

This relation should not be used indiscriminantly. It.is valid

only for ions at low E/P, but not for electrons and ions at high E/P.

The very capability of the electron to be accelerated rapidly by the

electric field and to lose relatively small energy in elastic collisions,

results in the electron drift velocity no longer being a linear function

of the applied electric field intensity.

3.5 Similarity Parameters

For any probe-plasma interaction problem, the physical process is

characterized by a set of nondimensional parameters. These parameters

are obtained by reducing the governing equations (continuity, momentum,

energy, and charge conservation) to dimensionless form. For similar

processes, these parameters will have the same numerical values. Only

those pertinent to the present problem are discussed here.

For the neutral gas, the usual fluid mechanical parameters which

appear in the. continuity and momentum equations are the Mach number, MU
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and the Reynolds number, Re. The Mach number is defined as IvI/c,

where v is the flow velocity, and c is the local sonic speed. For M+o,

the fluid is incompressible, i.e., Voq = o. In fact, appreciable

effects of compressibility are rarely encountered in a steady state in

which M does not exceed 0.5. (The main exception is free convection,

in which buoyancy is the very cause of the motion.) For a typical

ARCAS rocket payload drifting down with a parachute drag system, the

free stream velocity, U is 100 m/sec, L - 10 cm, so the free stream

Mach number, Mo, is estimated (7) to be 0.3. Thus in the present case,

the neutral gas flow is effectively incompressible. The Reynolds num-

ber characterizes the viscosity and the inertial force and is defined

-l
as Re = VL V-I where V is the kinematic viscosity. For a body immers-

ed in a flow, the reciprocal of the square root of the Reynolds number

is a measure of the thickness of the surface boundary layer where vis-

cosity is significant. This parameter can also provide an indication

of the degree of turbulence in the boundary flow. In the present pro-

blem, the Reynolds number is estimated to be 500 at 50 km and 10 at 80

km. Thus, for such a small number, the neutral gas flow over the blunt

probe is laminar.

For the charged particles, the parameters involved are the Schmidt

number, Sc , and the electrical Reynolds number, Rds, where suffix, s

denotes the species. Schmidt number for each species is defined as

-L
Sc s vD s where D is the coefficient of diffusion of that species.

It is the ratio of transport of momentum by viscosity and the transport

of charge particles. For electrons, the diffusion coefficient can be

found from McDaniel (37). It has been estimated (7) that Sci~2 at 50 km
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and I at 80 km. Electrical Reynolds number is the product of the Rey-

nolds number and the Schmidt number. For a negatively biased probe im-

mersed in a plasma flow, (Rd- 1/2 ) is a measure of the thickness of the

surface layer where diffusion (ambipolar when the motion of charged

particles is coupled, free when they are uncoupled) is significant.

As a summary to the above discussions, various length scales and

parameters with altitudes are plotted in Table 2.

3.6 Zero Space Charge Theory

We shall consider a parachute-borne, subsonic, electrostatic blunt

probe at a specified (positively and negatively biased) potential, in a

steady, incompressible flow with frozen chemistry and singly ionized

plasma. The motion of the neutral gas is assumed unaffected by the

charged particles, and any geomagnetic effects are not considered.

The potential distribution is determined by Poisson's equation as

V2V =-4we (n+- n_ - n) (3.6.1)

where V is the potential, n is the number density of species s, and sub-

scripts (+, -, e) denotes positive ion, negative ion, and electron re-

spectively. The nondimensional variables are defined as

V = V/L (3.6.2)

n - n/n (3.6.3)eo

-g 
= kTe/(47n e 2 ) (3.6.4)

S= eV/(kTe ) (3.6.5)
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Table 2

Dimensionless Parameters and Various Length Scales in the D-Region

Altitude 80 km 50 km

Mach number 0.3 0.3

Viscous Reynolds number 10 500

Electrical Reynolds number 10 1000

Viscous boundary layer thickness 3.16 cm 0.45 cm

Electric boundary layer thickness 3.16 cm 0.316 cm

Debye length 3 cm 12 cm

Electron-neutral mean free path 20 cm .32 cm

Ion-neutral mean free path 1.6 cm 0.0067 cm
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XD/L (3.6.6)

q/U (3.6.7)

where V- is the divergence operator, n'o is the ambient electron den-

sity, XD is the Debye length, Te is the electron temperature, L is the

probe diamter, q is the flow velocity, and U is the free stream velo-

city. The nondimensional potential, 4, is normalized by wall potential,

S We have

u (3.6.8)

where U = V/V. Substituting Eqs. (3.6.2 - 3.6.8) into Eq. (3.6..1),

dropping the tilde, we have

a2 w V2u = n + ne - n+ (3.6.9)

For a blunt probe diameter of 10 cm, and the Debye length varying

between 3 cm at 80 km and 12 cm at 50 km, the nondimensional Debye

length, a, is 0.3 at 80 km and 1.4 at 50 km. Notice here that the para-

meter a is affected by the probe diameter. For a probe potential of 1

Volt, 4w ~ 43 at 50 km, 58 at 80 km. Thus a2 w is a large parameter.

The potential, u can then be written as an expansion in a 2W , that is

1 iU = U + + +,.. . (3.6.10)o a2 (1 2)2 22

where Un is the n th order dorrection of the potential, U. Substitut-

ing Eq. (3.6.10) into Eq. (3.6.9), dividing by a 2O , and equating the

same order term, the zeroth order term is

V0 = 0 (3.6.11)
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So, with an error of order (a2~-1, Eq. (3.6.11) can be written as

V20 =.0 (3.6.12)

Thus the potential field is given to the first order approximation, by

the Laplace equation, Eq. (3.6.12). This simplification is due to the

low number density of charged particles (a - 0 (1)) and the high wall

potential (w >> 1).

Another way to look at this approximation is to make use of the

superposition principle of the field. The field at any location in the

plasma is actually the sum of the field due to the applied field in a

vacuum, Vuapp and the field due to the spatial distribution of the
app

charged particles, VUsp. We have

Vu = VU +VU (3.6.13)
app sp

where
V2 u = 0 (3.6.14)

app

V2 Usp n + ne - n (3.6.15)

Now, if VUapp >> VUsp, we have

VU = VIUapp (3.6.16)

Taking the divergence of Eq. (3.6.16), we have

V2 = 0 (3.6.17)

With the electrostatic field described by the Laplace equation,

the field will extend naturally to infinity, and it is no longer
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confined only to a thin region adjacent to the probe, as it is in most

probe-plasma interaction cases of interest. Physically, this is due to

the fact that the low charged particle density in the D-region inade-

quately shields the plasma from the probe potential. This results in

the field influenced region being large in comparison with the probe

diameter. Outside the viscous boundary layer, the electrons with light-

er masses, higher mobility will be dominated by the field effect, while

the ions which are heavier, and less mobile, are governed by the flow

mechanics. The fact that these two species are governed by entirely

different forces in this case will exclude any ion-electron paired mo-

tion; thus, a ambipolar diffusion is not possible here. With this same

line of reasoning, an alternate explanation is now provided to explain

the existence of that ambipolar diffusion region found by Lam (21).

The main point in that case is that the thin sheath assumed by Lam

shields the outer region from the probe's potential. Thus, outside the

sheath, electrons and positive ions are governed by the same neutral flow

and the same diffusion process (see Lam's Eq. (4.1)). Being governed by

the same processes, the positive ions and electrons will behave similarly

despite their different polarity. Thus, the neutrality condition still

holds outside the sheath which is often referred to as the ambipolar dif-

fusion region.

Using the Laplace equation, Lam's (21) nondimensional species mass

conservation equations become

Rd q Vn ~ Vn - V2n, = 0 (3.6.18)
+ + V
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Rd q. Vn, -Vn_ V n - V2 n 0 (3.6.19)

BRd q* Vn - Vn e. - V2n = 0 (3.6.20)
e e e

with
D m 1/2 UL

, Rd -- (3.6.21)
De L i

where m and mi denotes the mass of electron and ion respectively. The
e i

mobility of ion and electron have been related to their diffusion co-

efficients by means of the Einstein relation. Notice that the species

equations (Eqs. (3.6.18 - 3.6.21))are decoupled, and each species will

behave independently. The boundary conditions on charge density and

potential far away from the probe are

n () 1 + X (3.6.22)

n- (n) = i (3.6.23)

ne () = 1 (3.6.24)

S() = 0 (3.6.25)

where X is the ratio of negative ion density to the electron density at

infinite distance from the probe. Assuming a perfectly absorbing probe

surface, the boundary conditions at the probe surface are:

n+ (o) = 0 (3.6.26)

n (o) = 0 (3.6.27)

n (o) = 0 (3.6.28)e
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(o) = ( 3.6.29)

It is interesting to note that, by combining Eqs. (3.6.18 - 3.6.20)

one can obtain Touryan and Chung's (22) set of ambipolar equations, Eqs.

(16-18), which was based on the assumption of a thin sheath on the probe

surface. The difference of the charged particle dynamics in present

case and that in Touryan's ambipolar region is obvious. In the present

case, charged particles, being independent of each other's motion, move

according to their own transport properties (p, D) and the influence

of the neutral gas flow. Charged particles in the ambipolar diffusion

region, however, have to satisfy the neutrality condition, i.e.,

n+ = n_ + ne thus charged particles of opposite charge are, relatively

speaking, attached to each other, and they travel together. Their mo-

tion depends on the influence of the neutral gas flow and a joint

transport coefficient (ambipolar diffusion coefficient) of both species.

Furthermore , the quasi-neutrality condition of the ambipolar diffusion

region cannot be satisfied very near the wall where the sheath concept

is needed to remove this singularity. Whereas , in the present case , the

same set of equations, Eqs. (3.6.18 - 3.6.20), can be used for all loca-

tions.
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CHAPTER IV

SUBSONIC CONTINUUM BLUNT PROBE THEORY

4.1 Introduction

It is appropriate to start the analytic problem with a discussion

of the general method of treating the equations. The governing linear

differential equation, the species conservation equation, is nondimen-

sionalized to reveal the similarity parameters; similar processes have

the same numerical parameters. A limiting (very small) numerical

value of the parameter preceding the highest derivative term will

serve to define a length scale, and hence the thickness of the perturb-

ed region; the medium will be divided into two distinct regions. The

outer region, with the order of the governing partial differential equa-

tion (PDE) lowered, is unperturbed. The species number density in the

outer region is the same as that at an infinite distance away from the

probe. The inner region, governed by the same order PDE as the origin-

al equation, but with fewer terms, is perturbed.

When the body length (diameter) is much larger than the perturbed

characteristic length, the mathematics is simplified, and a boundary

layer problem presents itself. In the inner region, with the exception

of the convection term, all variation of physical quantities with the

coordinate normal to the body surface is relatively negligible. Despite

this simplification, the PDE is still difficult to solve due to the pre-

sence of the convection term which is still a function of all coordin-

ates considered. The equation can be simplified further if the system

considering has similarity. Mathematically, this means that a trans-

formation can be found to reduce the PDE to an ordinary differential
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equation. The resultant equation can, of course, be solved

readily.

4.2 Ion Collection Theory

The electric field distribution of the blunt electrostatic probe

is first considered. The collector is mounted on the forward facing

end of a right circular cylinder; the return electrode is at the

rear and the side wall surfaces are insulator. With the space charge

effect neglected, the electric potential field of a circular disc will

be a very good approximation for the present probe potential distribu-

tion; the solution is readily available (40).

For a circular disc of radius, a, wall potential, V , and co-

ordinates (y, d, r) as shown in Figure 3, the electric field, E,in two

interested cases, are as follows:

El 2aVw for r >> a (4.2.1)

E = 2V for r << a (4,2.2a)

Ed 0 O (4.2.2b)

where Ed and E are the electric fields in the d and y direction re-

spectively.

4.2.1 Attracted Ions

A positively biased probe is first considered. Negative ions

and electrons are attracted to the probe; positive ions are repelled,

but will find their way to the other (return) electrode where they lose
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their charges. The mass conservation equation of the negative ion

is

Rd q- Vn + V o Vn - V n = 0 (4.2.3)

with boundary conditions

n (<) A (4.2.4a)

n (o) = 0 (4.2.4b)

In the D-region, Rd >> 1, so we can represent n by an asymptotic ex-

pansion as

-1 -2
n n + Rd nl + Rd2 n2 + .... (4.2.5)

thwhere nI is the n order correction. Substitute Eq. (4.2.5) into
ii-

Eq. (4.2.3), divide by Rd, and equating the zeroth order term, we

have

q Vn - - 0 (4.2.6)
o-

With an error of order (Rd-1), we rewrite Eq. (4.2.6) as

q o Vn = 0 (4.2.7)

Note that the flow velocity, q, has been assumed of order 1 when equat-

ing various order terms. Naturally, this is correct only when the

thickness of the electric boundary layer is larger or comparable to the

viscous boundary layer thickness as in the present case. Eq. (4.2.7)

implies that the negative ions here are not affected by probe potential

and diffusion process can be neglected. Farthermore, the neutral flow
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velocity, q, does not interact with the density gradient, Vn_. There-

fore, negative ion density is not perturbed and remains as a constant.

That is, outside the electric boundary layer,

n =  = n /n eo (4.2.8)

The physical picture changes near the wall. The negative

ion boundary condition of zero number density at the wall requires a

large negative ion density gradient very near the wall. This region

is investigated by stretching the normal coordinates with a dimension-

less length scale, 61. Let y = y/6 1 , and assume 61 << 1. Substitute

y into Eq. (4.2.3), and in terms of the coordinates shown in Figure 4,

we have

Rd ( an )
Rd u -- + v + - - - +

x + y ax ax 61 2 ay D -

( 2n _ 2n 0
2 + 2 - = 0 (4.2.9)

ax 1 ay

The y-derivative of the convection termis not scaled because it is of

the same order of the corresponding x-derivative term in all locations.

To balance the convection term with the highest derivative term, it re-

quires that

-1/26 = Rd/2

which is identified as the dimensionless thickness of the electric

boundary layer. Neglecting terms of order (Rd-1/2 ), we have

an an a n- a2ny
u + v + _ - 0 (4.2.11)

Sx Sy By y 2



4Z

VBiCOUS
BOUNDARY
LAYER

SBOLUNT
PROBE

"=---- >! U X1

U

____ --- COLLECTOR
V, 1DISC

F H

ELCTRIC BOUNDARY LAYER

Figure 4. Axisymmetric Stagnation Flow Over the Blunt Probe



43

which is called the electric boundary layer equation. When equation

(4.2.11) is rewritten in dimensional form (except n_), we have

n an a2 - De av an
pu -- + pv - = pD - - P (4.2.12)

with boundary conditions

n (y = O) = 0 (4.2.13a)

n (y = O) = h (4.2.13b)

It must be noted that Eq. (4.2.12) is valid only inside the

thin electric boundary layer of Re-1/2 thick, and when y + * in Eq. (4.2.

13b), the boundary condition merely corresponds to the outer edge of the

electric boundary layer. Since the electric boundary layer is thin, the

electric field, Ey, is essentially constant inside this layer. From Eq.

(4.2.2), we have

-2V
E = (4.2.14)
y Wra

The physical picture for the migration of negative ions to

a moving positively biased blunt probe is as follows. Negative ions com-

ing to the probe by entrainment in the neutral flow are unperturbed until

they enter the electric boundary layer. Inside the electric boundary lay-

er, convection, mobility and diffusion all contribute to the flux, and

hence to the spatial distribution of the negative ions. The neutral gas

flow velocity (u, v) governed by the neutral gas momentum equation

(4.2.12) is the same as Eq. (7) in Sonin's (26) work, the only exception

is that the present case is simpler due to the assumed constancy of the
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neutral gas density. Sonin's solution is outlined in Appendix A. The

solution obtained for a negative-ion density gradient at the surface of

the probe is

(a- 0 =  2Sc /2ex [ - ( 2 /4ScRes) ]

0 1 1/2 0(4.2.15)
1 + erf [E/(4ScRes)12 ]

with

E----- E (4.2.16)
kT ye

and

2
Res = a (4.2.17)

where n is a boundary layer coordinate (see Appendix A), Sc is the

Schmidt number of the negative ion which is approximately the same as

that of the positive ion, Res is the Reynolds number based on the stag-

nation condition, g is the stagnation point inviscid flow velocity grad-

ient, and v is the kinematic viscosity of the neutral gas.

The negative current density, dl , to the collector disc is

dI = (n en v)y = 0 (4.2.18)

where v_ is the negative ion velocity due to diffusion and mobility, that

is,

DVn

S -- - PE (4.2.19)

Therefore, substituting Eq. (4.2.19) into Eq. (4.2.18), and dividing both

sides by en_ga, we have
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dl VndI D ()
n = 0 (4.2.20)

en ga ga n_

dIan 
(4.2.21)

en ga Res Sc n 0 (4.2.21)-o -o

Combining Eqs. (4.2.21) and 4.2.15), we have

dI ^2- = 2 sRes exp [-(E /4ScRes) ]
en ga Sc Res 1/2-o 1+erf [E/(4ScRes) ]

Following Sonin (26), when the strong field condition is satisfied, i.e.,

A -1/2
E (4ScRes) >> 1, Eq. (4.2.22) can be written as

dl
-- E
e _ (4.2.23)

en ga ScRes-o

Using the Einstein relation, Eq. (4.2.23) can be reduced to

dI = -en-o JE (4.2.24)

Thus when the attracting field in the electric boundary layer satisfies

the strong field condition, the electric field effect will overshadow

the flow effects and become the governing factor in ion collection.

Notice that Eq. (4.2.24) is exactly the same expression for ion current

predicted by Hoult's theory.

The above analysis is done for a positively biased probe.

When instead, the response of the positive ions to a negatively biased

probe is considered, the negative sign in Eq. (4.2.12) will change to

positive, n to n+, and the resultant equation corresponding to Eq.

(4.2.24) is
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dI+ w en_0 pE (4.2.25)

4.2.2 Repelled Ions

Por a positively biased probe, the mass conservation equa-

tion for positive ions is

Rd q Vn+ - V Vn+ - V2n+ 0 (4.2.26)

with boundary conditions

n+ (o) = 1 + X (4.2.27a)

n+ (o) = 0 (4.2.27b)

With the exact same procedure as outlined the previous section, we have

dI+ 2 exp [-(E2/4ScRes)] (4.2.28)
en+oga (irScRes)1 /2 1- erf [E/(4ScRes)/2]

For strong field condition, Eq. (4.2.28) can be reduced to

+ 2 exp [-E /4ScRes)] (4.2.29)
en+oga (wScRes)l/2

Notice that the current density dl is negligibly small for

-1/2E (4ScRes) >> 1.

The corresponding solution for the negative ions to a negatively

biased probe is

d 2 exp [-(E /4ScRes)] (4.2.30)
-oga (ScRes) / 2 1 + erf [E/(4ScRes)/2 ]
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dl- 2 exp (-(E2/4ScRes)] (4.2.31)

enoga (frScRes)l/ 2

To satisfy the strong field condition, a higher probe po-

tential is required at lower altitudes, where the electric Reynolds num-

ber is larger. For a strong probe potential, the current of the re-

pelled ions to the probe is negligibly small.

4.2.3 Justification of Hoult's Ionic Theory in the D-Region

Hoult's (7) ion collection blunt probe theory has been wide-

ly used for the D-region ionic data interpretation. This theory is

based on a bold assumption that the convection is completely dominant

until very close to the wall where mobility and diffusion abruptly do-

minate the transport of the charge particles. Hoult's prediction of the

linear variation of the current with voltage is well supported by blunt

probe data in the D-region (41).

The previous section has shown that Sonin's ionic theory is

equivalent to Hoult's theory provided the strong field condition,

E (4 ScRes)-1 /2 >> 1, is satisfied. To explain the capability of Hoult's

oversimplified model giving an experimentally verified prediction, it is

logical to see whether the strong field condition is satisfied in the D-

region. The available blunt probe data, which gives the potential of

the negatively biased probe at which measurements were made, is the

Eclipse data (42). The radius of the probe, a,is 10.3 cm, the free

stream velocity, U,is 100 m/sec.

With

kT
D e (4.2.32)

ee
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and

B = (me/m)1/2 (4.2.33)

The strong field parameter is reduced to

A 1/2 E
E a / X (4.2.34)

4-ScRes 4UkT .m m_ (V e)/2
e e - e

where v is the electron collision frequency with the neutrals, and
e

m is the mass of the negative ion. By substituting the constants, we

obtain

E
= 3.36 x 103 (Vy1/2 (4.2.34)

.A4ScRes 

This measuring probe potential, Vw , is approximately the middle point of

the range of the potential at which the negatively biased probe is

collecting positive ion current. The following computation is done

for the data obtained from the launch (D16) on 12 Nov 1966, and the

launch (Cert) on 5 Nov 1966, during a solar eclipse (42). The results

are tabulated in Table 3 and Table 4.

The result clearly shows that the strong field condition

(E (4ScRes) 1/2 >> 1) is satisfied throughout all altitude of interest

Hoult's ionic collection theory, thus is an adequate theoretical model

to be used for ionic data interpretation in the D-region.

4.3 Electron Collection Theory

4.3.1 Stationary Blunt Probe Theory

Before proceeding directly to the moving blunt probe analy-

sis, the limiting solution of a zero velocity blunt probe is first dis-

cussed here. The governing equations are as follows:



Table 3

Evaluation of the Strong Field Parameter for Data from "D-16"

Altitude (km)

.45 50 55 60 65 71 77 80

Range of probe -20 -20 -20 -20 -15 -15 -15 -15
potential (Volt) 0 0 0 0 0 0 0 0

Probe potential-
during measurement
Vw (Volt) -10 -10 -10 -10 -7.5 -7.5 -7.5 -2.5

Wall electric
field E (Volt/m) 62 62 62 62 46 46 46 15

Electron-neutral
collision frequency
Ue (sec-1) 6.3x10 3.2x10 1.6x107 8.4x10 4.6x10 2.2x10 8x105  5x105

Strong field
Rarameter
E/(4ScRes)1/2 26.2 36.8 52 72 72 104 173 171



Table 4

Evaluation of the Strong Field Parameter for Data from "Cert"

Altitude (km)

45 50 55 60 67 70 76 80

Range of probe -20 -20 -16 -14 -17 -17 - 7 - 4
potential (Volt) 0 0 0 0 0 0 0 0

Probe potential
during measurement
Vw (Volt) -10 -10 - 8 - 7 - 8.5 - 8.5 - 3.5 - 2

Wall electric o
field E (Volt/m) 64 64 51 45 54 54 22 13

Electron-neutral
collision frequency
U (sec-1) 6.3 x 107 3.2 x 10 1.6x107 8.4x106 3.4x106 2.4x106 82x10 5 5x105

Strong field
Rarameter
E/(4ScRes)1/2 27 38 43 52 98 122 83 148
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V2ne - V#Vn = 0 (4.3.1)

V2= 0 (4.3.2)

with the boundary conditions

ne () neo , e surface 0

(0) 0 surface

where the subscript, surface, denotes conditions at the probe surfaces.

The corresponding boundary configuration is shown in Figure 5a. Notice

that this configuration does not form a closed boundary surface.

The basic requirement for the solvability of the above

two elliptic, linear, second order partial differential equation is

knowing the conditions on closed boundary surface such as the one shown

in Figure 5b. In view of this difficulty of the present problem, the

blunt probe is represented by an oblate spheroid. Letting the spheroid

thickness go to zero, the blunt probe becomes a two-sided disc as shown

in Figure 6a. This model, crude as it is, will give a first-order

approximation of the real voltage-current characteristics of the blunt

probe.

In the special case when a thin sheath exists on the probe

surface, physical quantities will be independent of the coordinate nor-

mal to the probe surface. The governing equations will be two coupled,

second order ordinary differential equations and these have been solved

by Su and Kiel (43).

The present problem in its reduced form as shown in Figure

6a, has been analyzed by Stahl and Su (44). Atn analytic solution was
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(co)= 0 Ne (Co)= Neo

LSURFACE
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0 (co)= 0 N(co)= Neo

SURFACE - NeSURFACE O

(B)

Figure 5. Boundary Surfaces of the Perturbed Plasma:
(A) Open Boundary Surface, (B) Closed Boundary
Surface
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( )= O Ne (C0)- Neo

s RURFACE w W

NeSURFACE- 0

(A)

Figure 6. Boundary Configurations of the Blunt Probe:
(A) Two-Sided Disc, (B) One-Sided Disc
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found by assuming that the electron density gradient will vary linearly

with distance from the probe when far away from the probe surface. An

Einstein relation was used, though invalid for electrons. In the pre-

sent work, none of the above assumptions are made. A simple model,

based solely on data of electron drift velocity, is proposed.

Only the upper half of the disc, shown in Figure 6b, where

the collector disc is imbedded, is considered here. The electric field

expressions used here for this one-sided disc are the same as that used

by previous workers (43, 44) and have been listed in the beginning of

this chapter. The electrons, while bouncing around in collisions with

neutrals, have a net drift velocity along electric field lines. The

field lines normal to a given surface on the probe will form a stream

tube. In particular, the stream tube, pqq'p' to the collector disc as

shown in Figure 3, is of interest here. The flux of electron through

the tube is governed by Gauss' law as

AE = constant1  (4.3.3)

where A and E is the local stream tube cross-sectional area and the

magnitude of the electric field respectively. Mass conservation also

gives

n A vD = constant2  (4.3.4)

Combining Eqs. (4.3.3) and (4.3.4), we have

e - constant3 (4.35)
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For a given altitude and hence pressure p, we have

n D = constant (4.3.6)
e i- constant4

Since the drift velocity for electron is no longer assumed

to be linearly dependent on E, the experimental results of the electron

drift velocity versus electric field and pressure listed in McDaniel

(45) are used. The curve for data taken at gas temperature of 3000K

is shown in Figure 7. The curve has a constant slope, vDp/E,of about

107 cm2 sec- 1 volt-1 mm Hg at portion AB, and 5.5 x 10 cm sec -1 volt-1

mm Hg at CD. The slope at the saddle BC varies at values much smaller

than the above values.

The point E /p on the curve (Figure 7) is first considered.
w

In view of the fact that the velocity of the descending probe in the

D-region is small, the moving blunt probe data, Ew/p is used in the

present analysis. Data (46) consistently shows that the point E /p is

located on the portion CD of the curve. Values in one case are presented

in Table 5. At a given altitude, E/p will start with a value, E/p, on

portion CD; as distance away from the probe surface increases, E/p de-

creases. Portion AB on the curve will now be replaced by a straight

line (Figure 8). Eq. (4.3.6), when combined with the fact that the slope,

vDP/E, is a constant at field values below B, shows that the electron

density is constant at n (ambient electron density) for all locationseo

outside a position, yo, as shown in Figure 8. This distance, yo, thus

can be regarded as the perturbed thickness of the stationary probe. The

electron density is a constant, neo, outside yo; within the distance yo,
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the density changes according to Eq. (4.3.6). At B, E /p = 4 x 10-2

-1 -1 5 -1
volt cm mm Hg and vDo = 3 x 10 cm sec . With Eqs. (4.2.1) and

(4.2.2a), we have

E E a2
P P Y (4.3.7)

Thus at B, we have

E 1/2

o = 5a P-- (4.3.8)

With Eq. (4.3.3), the electron collecting surface area, A0 , is given

by

2 I
Ao 1 coL 2

a

For the data from the launch on December 5, 1972, the perturbed length

Y , the collecting surface area Ao, and the free stream velocity are

presented in Table 5.

While a near-surface diffusion layer is expected to exist,

the current to the collector disc is determined by the condition on the

surface at a distance yo away from the probe. It is

Ie = e vDo Ao neo (4.3.9)

where A is the cross-sectional area of the stream tube at distance y

from the probe surface. Using Gauss' law and Eqs. (4.3.8) and (4.3.9),

we have

Do eo col (4.3.10)



Table 5

Variation of the Parameter, rJ/p, the Electron Collecting Surface Area,

(Ad to the Collector Disc, the Perturbed Length Scale, yo, and

the Free Stream Velocity, U, for the Launch on December 5, 1972.

Altitude (km) E/p cm HgA (cm2 )  o (cm) U (m/sec)
Altitude (km) E/P cm-mm Hg 0

82 1.85 227 25.2 350

74.2 0.5 62.4 13.2 310

65.2 0.44 54.2 12.3 225

58.6 0.31 38.0 10.3 123

47 0.26 30.4 9.2 63

37 0.25 29 9 25
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Substituting numerical values, we have

S=2.4 x -12 ycol neo w
e a p (4.3.11)

Thus the electron current to the collector disc is proportional to the

area of the collector disc, ambient electron density and probe poten-

tial. The current decreases for a larger guard ring and lower gas

pressure. Taking the derivative of Eq. (4.3.11), we have

dl 2 n
e 2.4 1012 -col eo

dV a p (4.3.12)w

dl
Now, e is related to the term a usually referred to as the nega-

dVw

tive conductivity by

2
dl 2y a
e col -

dVw  a (4.3.13)

Combining Eqs. (4.3.12) and (4.3.13), we have the virtual relationships,

n = 8.35 x 1011 poG (4.3.14)

This model, which does not specifically include diffusion

processes, is based purely on a dominant mobility concept. The dia-

meter of the area, A , is the characteristic length of this problem.

Its value compared with the electron-neutral mean free path is an indi-

cation of the validity of a continuum description of the system. Com-

parisons of the drift velocity at the point B, (fo = 3 x 105 cm sec- )

and the free stream velocity, U, of the descending probe reveal a very

interesting result, the former being much larger than the latter. This
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seems to demean the contribution of convection to the electron flux as

compared with that by mobility. Thus it seems to imply that the pre-

sent stationary blunt probe theory may be used for a subsonically de-

scending probe. At this stage, however, it is not clear how the con-

vection effect will perturb the electron density at distance from the

probe further away than the perturbed thickness yo. The convection

effect will be investigated in the following sections.

4.3.2 Identification of Characteristic Layers for a Moving

Blunt Probe

For a positively biased probe, the electron conservation

equation in a continuum medium is

BRd qVn - V*(Vne - 4w n VU) = 0 (4.3.15)

with

ne (m) = 1 (4.3.16a)

ne (o) = 0 (4.3.16b)

In the D-region, Rd, the electrical Reynolds number is 103

at 50 km, 10 at 80 km, with B = 5 x 10- 3 . It will be noted for the pur-

pose of comparison that the characteristic thickness for ion collection

as noted earlier, is 61 = (Rd)- /2 . Notice that all physical lengths

have been nondimensionalized by the probe diameter, L. The presence of

the term 6 in Eq. (4.3.15), which is not found in the equations for

ions, makes the analysis for electron collection completely different

from the ion collection theory. The following analysis will be based

on the assumption that Pw > > BRd, which is appropriate in the D-region.
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The fact that w is the largest parameter in Eq. (4.3.15)

clearly reveals that the mobility term, (Vn eoV), is dominant in the

nondimensional length scale of order 1. This implies that the electron,

moving in region of approximately L cm away from the probe, is mainly

governed by the mobility (a combined effect of electric field and col-

lisions). Physically, the existence of this mobility dominant region

is due to the small inertia and high mobility of the electrons.

For smaller or larger length scale (nearer to or further

away from the probe), the physical picture changes. A smaller dimen-

sionless length scale 62 will first be considered. In terms of the

coordinates shown in Figure 4, Eq. (4.3.15) becomes

$Rd ane ane e u e Duu + + _u

w -+ax ay ax ax Vy ay

l x2  a 2

The small parameter (-) in front of the highest order derivative term

(singularly perturbation problem) predicts we have a boundary layer

behavior of the electron density near the probe. The coordinate is

stretched by letting q = Y- where 6 << 1, Eq. (4.3.17) becomes

2 2a2n a2n an ane + e e au e au
an2 2 ax 2 w 2x ax w62 an ay

(A) (B) (C)

2 an ,an-$Rd 622 u -+2 = 0 (4o3.18)
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DuNotice that is not scaled. This is because the potential is decreas-
ay

ing slowly (algebraic decay), and a boundary layer behavior (exponen-

tial decay) of the potential is not possible. To balance the highest

derivative term (A), and to satisfy the condition that 62 << 1, the

only candidates are (B) and (C).

The term (B) is first chosen, giving 62 = w- /2 This,

however, when substituted into Eq. (4.3.18), dropping terms smaller

than order 1, will give

e e u 1/2 a au
+ 0 (4.3.19)

2 ax ax w a ay

1/2The last term, which is of order )w / 2 , is larger than the other two

-1/2order 1 terms. So, with an error of order w , we have

ane au = 0 (4.3.20)a~n ay

However, a constant magnitude for potentia? or electron number density

is not reasonable. This contradictory conclusion implies the initial

assumption is incorrect.

So, instead, the term (C) is used to balance (A). This

1
gives 62  -, and the resultant equation is

2 w

an ane e au
= 0 (4.3.21)n2  anl ay

ne (n-) = nec (4.3.22)

n (o) I 0 (4.3.23)e
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1
The scaling factor, .-, is identified as the nondimensional thickness

of this layer, which we will refer to as the diffusion layer. The fact

that this layer is thin L )allows the electrical field, -U,to be

treated as a constant. The solution of Eq. (4.3.21) is

Sn neC [1 - exp(~ n]) (4.3.24)

where neC is the electron density at the edge of the diffusion layer.

The mechanism is clearly shown in Figure 9. For any con-

trol volume inside this layer, the diffusion process and the mobility

together determine the number density inside this volume. For diffu-

sion, since the electron number density increases exponentially with

distance from the wall, the density gradient is smaller further away

from the probe, and thus results in a loss of electrons inside this

aucontrol volume due to diffusion. On the other hand, @- decreases al-
ay

gebraically with distance away from the probe. Thus the product term,

au
ne y, is larger further away from the probe surface. This results in

a net gain of electrons in the control volume from the undisturbed plasma

due to mobility. The combined effect of the diffusion and mobility, of

course, will leave the number density in the control volume unchanged.

Diffusion, a phenomenon due to the electron's thermal mo-

tion, can be observed independently if the electron and ion densities

are so low that the space charge field can be neglected. From a physi-

cal standpoint, the gradient appearing at a point in the field is the

result of a process of creation or loss of plasma, and in particular,

it results from the zero concentration boundary condition imposed at the

surface of the probe.
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It is important to note that the diffusion layer is pre-

dicted by the continuum equation, Eq. (4.315). It is appropriate only

when this layer can be treated as a continuum. Otherwise, the density

gradient and the drift velocity artifices are not defined, and diffu-

sion and mobility mechanisms can no longer be taken to exist since

they are collisional processes. The criterion for having a continuum

inside the diffusion layer is that the diffusion layer (i 0 is thicker

than the mean free path of the electron-neutral collisions, X . When

this criterion is not satisfied, the diffusion layer is no longer a re-

levant concept. This will be further discussed in the next section.

Next, a large dimensionless length scale, 63 >>40(1) is

considered. Here, at such a far distance away from the probe, the x-

direction variations of the physical quantities (ne, U) will be com-

parable to the variations in y-direction. So, both coordinates are

scaled as Ci, y) = (x, y)/6 3 , where 63 >> 1.

Substituting into Eq. (4.3.17), we obtain

$Rd n(e 3ne + ne au e auS/ nv +2n

'2ne o (4.3.25)
K3 D ay2

It is not possible to balance the highest order derivative term

S2n 2n
- e+ a while simultaneously satisfying the condition, 63 >> 1.

Thus, the boundary layer analysis using the length scale, 63, to balance

the highest order derivative term fails in this case. This failure is
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expected since all boundary layer analyses are based on the requisite

assumption that the perturbed region is a thin layer on the body.

However, useful information is gained when the first two

terms, convection and mobility, in Eq. (4.3.25) are allowed to balance

-1
each other; this gives 63 = w (BRd)-l. Dropping the term of order

-2
BRd ,- 2 we have

( e ane (an e an
u + v + -- + i 0 (4.3.26)

Hence convection and mobility will determine the spatial distribution of

-1
electrons between the region at ) L ($Rd) I cm away from the probe and

the next inner layer. Physically this is reasonable since there must

be an intermediate distance away from the probe surface where both con-

vection and mobility are both of the same order of magnitude. Notice

also that when 6 > Ow(Rd)- , the convection term in Eq. (4.3.25) do-

minates, which implies that for regions at distance greater than

--

0wL( Rd) -I cm from the probe, convection alone dominates. In this outer

region, (6 > w (BRd) -1), as has been also observed in ion collection

theory, the electron number density is unperturbed and is the same value

as the density at an infinite distance away from the probe.

As a result, the analysis predicts four distinct regions for

electron collection in continuum flow. They are:

1. o < 6 < w-1  diffusion-mobility dominant region

2. 0 -1 < 6 < 1 mobility dominant region
2.l

3. 1 < 6 < w (aRd)-1 mobility-convection dominant region

4. w (Rd) - 1 < 6 convection dominant region
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where 6 is a nondimensional length away from the probe surface. The

physical picture can be summarized as follows. With respect to the

probe, the electrons are moving with a constant velocity i (the free

stream velocity). When outside the sphere of influence of the probe,

the electron density is unperturbed and is the same as the ambient

electron density. When inside the sphere, which is approximately of

radius wL (ORd)- cm, the electrons begin to feel the pull of the

probe potential and converge toward the probe. Here convection and mo-

bility dominate the dynamics of the electrons. This stage continues

until the elections are near enough to the probe (6 < 1) that the

electric field alone, completely determines the motion of the electrons.

This process persists until the electrons are very close to the probe

-1(6 < ). Here, the converging effect increases the electron density,

but not high enough for the space charge effect to be included. This

high number density, together with the zero electron density boundary

condition at the wall set up a density gradient, which balances the

mobility by the diffusion process.

4.3.3 A Simple Model Based on Particle Convection

Attempts to obtain an analytic solution to the Eq. (4.3.15)

will be very difficult if not impossible. This is explained as follows.

Previous analysis shows that the perturbed region, for electron collec-

tion, is large compared with the probe size. Thus the whole fluid do-

main (not just a thin layer on the probe surface) as shown in Figure 6b

has to be considered. Furthermore, the superposition of a flow on the

probe destroys the symmetry of the system which is now crucial for any
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analytic solution. Thus, the system is too complex to allow an analytic

solution. The only consolation is that the electric field is uncoupled

from the species density and hence the flow effect. The electric field

over a one-sided biased disc can still be used for the present problem.

This last assumption, together with some observed characteristics of

the system, allows the present problem to be solved in a control volume

fashion.

A simple consistent model is now developed in order to re-

late the current collected to the probe voltage and ambient quantities

for electron collection. In view of the result of the previous section,

the perturbed region is divided into three distinct regions.

1. Diffusion layer

This is a very thin layer adjacent to the probe surface.

Diffusion and mobility are the dominant processes governing the trans-

port of electrons, and hence the spatial distribution of electron den-

sity; it is shown in Figure 10a. Due to the edge effect, only the cen-

tral portion of the probe is governed by the diffusion equation, Eq.

(4.3.22), and the electron number density is given by Eq. (4.3.24). The

electron current to the collector disc is

3n
I en D Ae en De Gy wall col

nen D11 A
n e D( wall Acol (4.3.27)

where nec is the electron density at the edge of the diffusion layer,

De is the diffusion coefficient of the electron, and A co is the area of
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the collector disc on the probe. Since the diffusion layer is thin

- wall is a constant and given by

-2V

ywall a (4.3.28)

where V is the probe potential, a is the radius of the probe. Notice

that only portions of the electrons entering the diffusion layer will

be collected by the collector disc, while the rest go to the guard

ring.

2. Mobility Layer

Immediately above the diffusion layer, the electron

dynamics are determined only by the electric field as the field induced

velocities dominate convection velocity here. This region is referred

to as the mobility layer and is shown in Figure 10b.

Near the outer edge of the region, the electric field

is given by

-2aV

B B 2 (4. 3. 29)

where EB is the electric field at the outer edge of the mobility layer,

and yB is the radial distance from the outer edge to the probe. Notice

that Eq. (4.3.29) is correct only when yB >> a. The negatively charged

(return) electrode on the other end of the probe can influence the

electron density below the level line AB. However, on the basis of

rocket experiments, only those electrons entering through the upper

hemisphere shown in Figure 10b need to be considered. Electrons enter
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the mobility region with two velocity components, the convection velo-

city which is the same as the free stream velocity, and a drift velo-

city. The electric drift velocity as a function of the electrical field

E and the neutral gas pressure , can be found in McDaniel (45). The

drift velocity is smaller further away from the probe.

In view of the fact that convection is neglected in the

mobility layer, the outer edge of the mobility layer can be defined as

a surface where the drift velocity is much larger than the convection

velocity. To estimate orders of magnitude, vDB = 10 U is a criterion

that will be used to approximately locate the outer edge of the mobi-

lity layer in this model. There is an upper limit in choosing vDB* For

a too large VDB, the outer edge of the mobility layer will be too close

to the probe for y >> a to be valid; and, hence, Eq. (4.3.29) cannot be

used for electric field evaluation at the outer edge of the mobility

layer.

The criterion, vDB = 10 U, used to include the char-

acteristics of a mobility layer (vD >> U) is an ad hoc assumption. Thus,

the corresponding length, yB' where this velocity occurs is not a natur-

al length scale derived from the governing equations. At a given alti-

tude knowing the neutral gas pressure, p, and the probe velocity, U,

and hence the electron drift velocity, vDB, the electric field EB can

be found in McDaniel (45). Knowing the probe potential, and with the

help of Eq. (4.3.29), the radial distance, YB' can be computed. It will

be recalled that the above analysis of the governing equations indi-

cated that the thickness of the mobility layer is of order L. These

length scales together with the stationary probe mobility layer
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thickness, yo, are presented in Table 6. It is noted that yB which

is roughly twice as large as L, is of the same order as L. Thus the

mobility layer thickness predicted by the above ad hoc criterion gen-

erally agrees with the prediction based on analysis on the governing

equation. The use of the radial distance Y instead of L has the ad-

vantage that a hemispheric mobility layer outer edge is physically more

realistic than an infinite planar edge at distance L from the probe

surface predicted by the two-dimensional species equation analysis.

It will be noted here that the above criterion, which

is crucial for the analysis that follows, will be irrelevant when the

probe is stationary. The present model would predict an infinitely

large mobility layer for zero convection velocity. The question of

consistency of the present theories for moving and stationary blunt

probe naturally arises. Does the finite mobility layer (thickness ~

yo) predicted by the stationary probe theory proposed previously con-

tradict the infinite mobility dominant domain implied by the moving

probe theory here in the zero velocity limit? The stationary probe

theory is based on the observation that the current to the probe can be

evaluated approximately at a distance yo from the probe surface due to

the nonlinear variation of the electron drift velocity with electric

field. Any stationary probe theoretical model, not considering the non-

linearity of the electron drift velocity would also predict an infinitely

large mobility region. This is obvious since the Laplace equation pre-

dicts an electric field extending to infinite distance from the probe

and hence the electron drift velocity. This undeniably is a bad feature

of the present convection model in the zero velocity limit. However, a



Table 6

Comparison of Various Length Scales for the Mobility Layer

Altitude (km) Yo (cm) L (cm) YB (cm)

82 25.2 7.4 15

74.2 13.2 7.4 12

65.2 12.3 7.4 14

58.6 10.3 7.4 15

47 9.2 7.4 18
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latter discovery turns out that convection is negligible and a com-

parison of YA and yo in Table 6 shows that these two lengths are

approximately of the same magnitude. Thus the singular behavior of

the convection model in the zero velocity limit is irrelevant.

Electrons entering through surface B will also hit sur-

face C. Thus electron density at surface B and C are related by the

following equation expressing mass conservation,

neB (AB DB + 7BU) = neC (Ac vDC + 7a2U*)  (4.3.30)

where ne is the electron density, vD is the drift velocity, A is the

area, a is the probe radius. The suffixes B and C denote quantities

at surface B and C respectively. U is the convection velocity at the

diffusion layer's outer edge which is much smaller than U.

The question of the sensitivity of the current predict-

ed by the model to the choice of a larger drift velocity, say v . =

100 U, is raised. The mobility layer affects the current to the probe

by predetermining the electron number density at the outer edge of the

-1-

diffusion layer through Eq. (4.3.30). Since vDC > vDB >> U > U

approximately Eq. (4.3.30) becomes

n A vDB = nec Ac vDC (4.3.31)
eB B eC c DC

eB (.ra 2) vDC
ne (27yB2) vDB (4.3.32)

For a given probe potential and pressure, Eq. (4.3.32) becomes, with

(4.3.29)
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neB EB= const
eC DB (4.3.33)

A glance on Figure 8 clearly reveals that the ratio E /VB is rela-

tively constant on the portion CD of the curve; thus a higher drift

velocity, vDB, will not appreciably affect the ratio nIB/neC and

hence the current to the probe.

3. Convection and Mobility Region

Above the mobility layer, is the region where the

electric field becomes weaker, and both mobility and convection deter-

mine the trajectory, and density of electrons. At such a large dis-

tance away from the probe, it is appropriate to assume the convection

velocity of the electron does not change throughout this region, while

the drift velocity directed toward the probe is increasing steadily.

The outer edge of this region is defined as the location where the con-

vection velocity, U, is much greater than the drift velocity, vD.

Specifically, for this model VDA = 0.1 U is chosen to be the criterion

for determining the position of this outer edge. The minimum allowable

VDA depends on the availability of the experimental data for vD. Notice

in McDaniel (45) that the lowest value of vD reported is approximately

103 cm/sec. The structure of the convection and mobility region, and

inner layers are sketched in Figure 11.

Only the electrons which entered through the central

portion of the hemisphere at YA, as shown in Figure 11, will arrive at

the mobility layer. To estimate the magnitude of this electron collect-

ing surface AA, the trajectory of electron has to be evaluated inside
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the convection and mobility region. With the convection velocity, U

being a constant, and the drift velocity, v a function of IE/pl, the

velocity vector V of the electron at any location inside the convection

and mobility region is given by

v = er (U cos + vD) + e. U sin 0 (4.3.34)

where e r and e are radial and tangential limit vectors respectively,

and 0 is the angle as shown in Figure 11. Knowing YA' YB' and the drift

velocity at any location, the minimum angle, 0o, for collection can be

easily found by a simple numerical routine.

Again, by conservation of electrons, the electron num-

ber density at surface A and surface B are related by

ne B r(YA sin e)2 U + 27YA2 (1-cos 6) vDA

ny, 2 U + 2fyB2 VDB 
(4.3. 35)

Now, outside surface A, the electric field is so weak

that the number density of electrons is relatively unperturbed. Thus,

it is a fair assumption to say that

neA = neo (4.3.36)

Combining Eqs. (4.3.27), (4.3.30) and (4.3.35), we

have

I = en D (- _ Acol
e eo e y wall

YA2 [sin 20 U + 2 (1-cosO)vDA]

[a2 vDg YC2 ] (4.3.37)
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Notice that De, YA B' VDC and VDA are all dependent on'the wall po-

tential V . Thus, the current Ie may no longer be a linear function
w e

of the wall potential as found by Hoult (7).

To see how the number density in different layers varies

with the probe voltage and altitude, we assume U 1= 00 m/sec, a = 10 cm

and compute n B/n6A and neC/neB as follows. At a given probe potential

and altitude (hence p), and the fact that vDB = 10 U and vDA = 0.1 U,

YA and yB can be found. The drift velocity inside the convection and

mobility region can be approximated as

vD = 10 (logl0 E/p + 7.065) (4.3.38)

which is a good representation for drift velocity below 105 cm/sec as

shown in McDaniel (45). Thus, knowing E, p and v inside this region,
D

the trajectory of the electron can be numerically computed and the min-

imum angle 6 and hence A can be found. The time increment used in the
o A

-8 ad~'teeetonumerical computation is 10 sec. Having 60, YA and YB' the electron

density ratio neB/n A and nec/n e can be found. The results are plotted

in Figure 12 and Figure 13, for the mobility layer radius, YB, and nec/neo.

As expected, at any altitude, it was found that an increase

of probe potential perturbs the plasma further. Thus the collecting

surface, AAis larger, further away from the probe, and the ratio neC/ndB

is greater. When the potential is held fixed, as the probe goes higher

altitude, .the gas will be less dense, and the electrons have fewer colli-

sions with the neutral gas molecules. Thus a smaller electric field is

required to accelerate the drift velocity of the electron to meet the

requirement vD = 10 U, and the distance from the probe where having this
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electric field, of course, will be longer. Therefore, the collecting

surface, AA, will be larger and further away from the probe.

Unexpectedly, the numerical. result shows that the collect-

ing angle 8o is approximately constant at 28o. The ratio neB/neA was

also found to be approximately constant at 1 for altitudes and voltages

considered. Thus, it appears that the convection and mobility region

only explains the mechanism how the mobility layer gets its electrons;

the region does not, however, change the electron number density and

essentially the electron density at the outer edge of the mobility layer

is the electron ambient density.

Notice that the probe radius is the typical size of earlier

rocket launches (Cert, D-16), which is two or three times larger than

the size of more recent launches. Even with this large radius and at

the extreme condition (80 km, 7 volt), the ratio nee/neo is only about

70 which is low enough for the space charge effect to be neglected.

The zero space charge approximation is even better for smaller probe

radius and lower altitudes.

4.3.4 Collisionless Surface Layer

The fact that the diffusion of electronsis a collisional

phenomenon requires that the mean free path of electron-neutral colli-

sions, Xe,, should be much smaller than the estimated thickness of the

diffusion layer (L/Ow)O When this requirement is not satisfied, the

diffusion layer is not a relevant concept. This difficulty is removed

by replacing the diffusion layer with a collisionless surface layer.
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For the case Ae n < a, one mean free path (Aen) from the

probe, a closed surface is drawn as shown in Figure 14a. The electrons

inside this layer experience no collision with the neutrals. This lay-

er is referred to as the collisionless surface layer. Above this layer,

we still have the mobility layer, and the convection and mobility layer.

Inside this collisionless surface layer, electrons move at thermal

velocity and the current to the collector disc is the thermal flux times

the area of the collector disc. Thus, the electron current and electron

density ratio are

e
Ie ne Ce Acol (4.3.39)

neB A VDB = neX (a 2 C e (4.3.40)

Combining Eqs. (4.3.35), 4.3.39) and (4.3.40), we have

I ~1 n e C A H (4.3.41)
e 4 eo e col

2
ha Ce (4.3.42)

Remembering that vDA << U and 6 = 280, we have

2 (sin 2);

2--
a Ce (4.3.43)

The radius of the convection-mobility region, YA, is found

as follows: The drift velocity, v DA which has been chosen to be 0.1 U,



84

CONVECTION ANDA
MOBILITY REGION

A B I

SMOBILITY LAYER /

COLLISIONLESS
SURFACE LAYER

(A)

MOBILITY LAYER AB

\ /
\ COLLISIONLESS

SURFACE LAYER /
e-n

L

(8)

Figure 14. Perturbed Regions around a Positively Biased Probe for
(A) X << L, (B) X > Le-n e-n ~



85

3 -1
has a maximum value of 3.5 x 10 cm sec at 82 km. Data in McDaniel

5 -1
(45) shows that for drift velocity below 10 cm sec , we have

v = 107 JE (4.3.44)
D p

So, at the outer edge of the convection-mobility region, we have

EA = 10 8  p (4.3.45)

Recall the relation

-2aV

w (4.3.46)A 2

we then have

2 8 2a Vw (4.3.47)
YA T pU

Now combining Eqs. (4.3.43) and (4.3.47), and recalling

that the angle e has been found to be relatively constant at 280 for

all altitudes and probe potentials considered, we have

V7  w
H 1.4 x 10 (4.3.48)

ap Ce

Taking the derivative of Eqs. (4.3.43) and (4.3.48) with respect to

V , and combining with Eq. (4.3.13), we have

12
n = 1.137 x 10 pO (4.3.49)eo

Notice that Eq. (4.3.49) is value only when X << a. For other
e-n

value of Ae_n, the collisionless surface layer would be represented by
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a hemisphere as shown in Figure 14b when Xe-n >> L and by a disc when

e-n - L. The electron number density in the mobility layer will now

be given by.

2neB V nA (wa + 2ra e  )CeB VDB e e-n e (4.3.50)

for Xe- n - L (4.3.50)

2 --neB AB DB - neX (27rX 2 ) Ce

for Ae-n >> L (4.3.51)

Thus, the equations correspond to Eq. (4.3.49) for larger A are

or e-na + 2a(43.52)
neo 1.137 x 1012 2 en paeo 2

a

for Ae-n ~ a (4.3.52)

neo = 1.127 x 1012 (2 2  pa_

for Xe-n > a (4.3.53)

Comparisons of Eqs. (4.3.41) and (4.3.48) and (4.3.11),

and Eq. (4.3.49) with (4.3.14) show that the current collected by the

collector disc predicted by the stationary probe theory is approxi-

mately the same as that by the present moving probe theory. The sta-

tionary probe theory is based on a purely mobility concept with the

cut-off distance (perturbed region thickness) determined by electron

drift velocity data. The moving probe theory begins with the
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inclusion of convection, diffusion and mobility in the analysis. How-

ever, computations based on rocket data (Chapter V) shows that the

diffusion layer is an irrelevant concept and hence does not physical-

ly exist for electron. Also, the convection effect perturbes the con-

vection-mobility dominant region very little and thus can be neglected.

Now, since mobility is the only dominant process in both stationary

and flowing theories, it is thus not too surprising to find that they

predict the same current to the collector disc. In the work below,

rocket data will be reduced by the convection theory, though it must

be remembered the stationary probe theory is equivalently accurate at

low altitudes.

4.3.5 Validity of the Electron Collection Theory in the D-Region

Two conditions have to be satisfied before the continuum

equation Eq. (4.3.15) can be used. First, both the neutral gas and

the electron gas must be a continuum. This requires An-n << Ip and

Xe-n << ip, where 1p is the characteristic length of the plasma-probe

interaction problem. Now, since Xe-n > Xn-n > Xi-n, the criterion to

be met is

A << 1 (c)
e-n p

Second, the mobility must be defined. This requires that the ratio

of the velocity increment induced by the field, E, within one mean

free path, to the thermal velocity, is small. With the time between

1/2
collisions, At, represented by Xe-n/Ce and Ce 

= (8 kTe/rme) , we

have (7)
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eV )
'AV 7 .w e-n
8 kT << 1 (4.3.54)

Thus, we have

Lmb << I (d)

p

where

eV

L = X 
mob 8 kTe e-n 8 w e-n (4.3.55)

The above two conditions (c and d) ensure the legitimate

use of the continuum equation and the mobility concept. In the pro-

cess of analysis of the continuum equation, three further conditions

are assumed. They are, (1) w >> SRd and 4w >> 1, (2) a2w >> i,

(3)Lp/w >> X .en" The first condition allows the division of three

distinct perturbed regions. The second allows the use of the Laplace

equation, and the last made the diffusion layer concept a valid de-

scription of the electron dynamic very near the probe surface.

For electron collection theory in the D-region, there are

three lengths which can be used for the characteristic length Ip of the

plasma-probe interaction problem. They are the probe diameter L, the

mobility layer radius y B and the convection and mobility radius YA"

The length L and yA are not chosen because the former is not a repre-

sentative length scale for the perturbed region, while the latter does,

but the variation of electron density in the convection and mobility

region was found to be negligibly small in earlier sample computation.

So the remaining one, yB should be the characteristic length scale for

this plasma-probe interaction problem. That is
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1p = YB (4.3.56)

Notice that YB is a function of the radius, a, potential, Vw, alti-

tude, h, and the velocity, U, of the electrostatic blunt probe.

Based on the blunt probe data obtained from the launch on

December 5, 1972, at Wallops Island, the mobility radius, YB, the

electron's electrical Reynolds number, Rde (BRd), the mobility concept

length scale, Lnob, and the diffusion layer's thickness, L/w, were

evaluated and are plotted in Figure 15 with Ae-n* It is concluded

that the diffusion layer is not a relevant concept, since L/ w < Xe-n

for all altitudes considered. The continuum assumption, Ae-n <YB

fails above 70 km. Regarding the mobility concept, the length scale,

Lmob, was found to be much greater than the characteristic length

scale, YB, only below 60 km. However, according to Hoult (7), the

requirement that Lmob/lp << 1 is conservative by a factor of 102 due

to the clustering effect of the charged particles. Hoult concluded

that the concept of diffusion is appropriate up to 80 km. The

assumption w >> BRd was found to be good for all altitudes considered

while the assumption ~w >> 1 is correct only below 70 km. In

conclusion, the present electron collection theory is valid below the

altitude 70 km. Above it, the result predicted by the theory is

questionable.

4.3.6 Electron Current to a Negatively Biased Probe

The present electron collection theory will not be com-

plete without a discussion of the electron current to a negatively

biased probe. Notice that the electron collection theory discussed
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above is for a positively biased probe. The dynamics of electrons to

a negatively biased probe is governed by the mass conservation equa-

tion as follows:

V * (ORd ne q - ne V4 - Vne ) e 0 (4.3.57)

It is a good assumption to assume that the electrons in the vicinity

of the negatively biased probe are not dense enough to have a signifi-

cant diffusion process. So, neglecting the diffusion term, we have

V * (0 Rd ne q - ne V4) = 0 (4.3.58)

or BRd neq - ne V4 = K

where K is a constant. To satisfy the boundary condition ne(o) = 0,

it requires that K = 0. We have, then,

q = $Rd (4.3.59)

In the direction perpendicular to the probe surface, v -y for a stag-

nation flow, and a- 1 near the wall. We then have
y

Yo
aRd (4.3.60)

At this distance from the probe, the tendency for the electron to be

carried toward the probe by the neutral gas is cancelled by the repul-

sion force of probe potential. This distance, yo, is a representative

thickness for the forbidden zone on the probe surface where electrons

are prohibited. Throughout the D-region, this distance is very large,
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thus, electron current to a negatively biased probe can be neglected

as compared to be ionic current.
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CHAPTER V

COLLISIONLESS BLUNT PROBE THEORY

The altitude of interest where the blunt probe will function in a

collisionless regime is between 70 km and 300 km. Above 70 km, the

collection continuum theory previously described begins to fail due to

the rapid decrease of collision between electrons and neutrals. The

kimetic theory based on statistical particle dynamics should be used

in order to obtain a better microscopic picture of the physical process-

es involved in the interaction. The altitude of 300 km is chosen as

the upper limit of the present discussion solely because the altitude

corresponds to the F2 peak, where the electron density is highest in

the ionosphere. For the purpose of estimating various relevant para-

meters, the typical variation of the electron temperature and density

variation between these altitudes are included as shown in Figure 1 and

Figure 16. It should be noted that both the neutral and electron tem-

perature rise for higher altitudes, but with the latter rising more

rapidly than the former.

5.1 Theory.: 82 km to 300 km

The lack of any blunt probe data above 82 km requires discussion

of this region to be based on some realistic assumption. The follow-

ing is a discussion on the pros and cons of using the thin sheath theory

to predict the probe characteristic above 82 km.

5.1.1 Applicability of Thin Sheath Concept

First, it is the intent here to show that a descending probe

can be reasonably treated as a stationary probe. Above 82 km, all
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charged particles whose mean free path is larger than all characteris-

tic lengths of the plasma-probe interaction problem, are relatively

free to move without collisions. Meanwhile, the very small numerical

value of the parameter a 2w here, preceding the highest derivative term

in the Poisson equation, indicates the presence of a sheath on the

probe surface. Outside the sheath, charged particles unaffected by

probe potential, are unperturbed, and enter the sheath as the vector

sum of two velocities. They are the thermal velocity and the descend-

ing velocity of the probe, U. Naturally, any probe theory neglecting

the fact that the probe is actually descending at velocity,U, will in-

cur an error of order,U, where C is the thermal velocity of the at-
Css

tracted charged particles.

For a parachute-borne probe descending from 300 km, the

parachute will no longer be an effective drag inducing system. This

failure is. clearly revealed when comparing the relative size of the

parachute diameter, dpara , and the neutral mean free path, Xn-n' which

can be used as an approximate separation distance between the neutral

atoms. The very large ratio X n-n/dpara shows that the drag induced by

the parachute is insignificant. Throughout most of the altitude range

(82 km - 300 km), the probe will be descending at hypersonic speed

which is estimated to be 1 km/sec. With the ionic thermal speed of

approximately 500 m/sec, the error introduced by neglecting the de-

scending velocity of a negatively biased probe is very large (200 per-

cent). Whereas, for a positively biased probe, where electrons are

attracted, the descending probe can be reasonably treated as a sta-

tionary probe with only an error of approximately 1 percent.
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Second, the value of the nondimensional potential, ,w

between 82 km and 300 km, will be estimated with the guide-lines from

lower altitude measurements. The electric field of the blunt probe at

which measurements were made at lower altitudes are shown in Figure 17.

At 82 km, Ew - 0.01 volt/cm, and the corresponding probe potential for

that probe configuration (radius - 3.7 cm) is about 0.04 volt. Above

82 km, no blunt probe data has been obtained. For the sake of analy-

sis, the probe potential above 82 km is assumed to be 0.04 volt. This

is a conservative assumption, since the trend of the data shown in

Figure 17 predicts that the field, E,will be even smaller for altitudes

above 82 km. This, together with the electron temperature shown in

eV
Figure 16, allows an estimation of Ow which by definition is w/(kTe).

The computed value of w is 0.23 at 300 km and 0.3 at 175 km; it slowly

increases to 3 at 82 km.

The magnitude of 4w between 175 km and 300 km found above

satisfies the assumption of 6pik's analysis (4.8), and the screening

distance of the biased probe at rest can be found on that basis. Opik

has examined the screening problem for a stationary finite size charged

body (negative and positive) in medium where the general thermodynamic

equilibrium holds (e.g., with a Maxwellian distribution of velocities).

He found that the screening distance (sheath thickness) is exactly the

Debye length when 4w < 0.3. This condition is satisfied between 175 km

and 300 km, but fails in the altitudes ranging from 82 km to 175 km.

The use of the Debye length as the sheath thickness between altitudes

82 km and 175 cm is convenient, but not supported nor disapproved by

any existing collisionless probe theory. In view of the fact that
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w 1 i here, the sheath thickness will solely be a function of the De-

bye length and probably weakly depends on Ow. Thus, it is reasonable

to use the Debye length as an indicationof the sheath thickness through-

out the entire range of altitudes considered here (82 km - 300 km).

The computed value of the Debye length based on the typi-

cal electron density shown in Figure 1 is 0.3 cm and 300 km and 3 cm

at 82 km. For a typical probe diameter of 7.4 cm, the sheath on the

probe is thin at 300 km and relatively thick at 82 km. The mean free

path for charged particle-neutral collisions is larger than the thick-

ness of the sheath; thus the sheath on the probe surface is collision-

less. For a thin sheath, the streamlines of the attracted charged parti-

cles will be relatively straight and perpendicular to the probe surface.

A one-dimensional analysis inside the sheath is thus applicable and will

be listed in the next section. When the sheath is thick, the streamline

will now narrow towards the center of the collector disc. To account

for this converging effect of the streaming lines, the two-dimensional

Poisson equation, which is elliptic in character, has to be solved.

The mathematical equations involved are intractable. However, only

those attracted charged particles entering through the central portion

of the thick sheath will arrive at the collector disc, and be measured

as the current to the probe. The converging effect here is probably

small enough to allow the thin sheath solution to describe the probe

characteristic. Naturally, the current will be underestimated by the

thin sheath concept due to the converging effect of the stream lines.

In conclusion, the thin sheath concept will be used for the

entire altitude range (82 km - 300 km) to determine the current voltage

characteristic of the probe.
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5.1.2 Thin Sheath Theory

The collisionless infinite flat plate stationary probe

theory is well understood and available in text material (49). The

planar probe is assumed to be cold and absorbing; both ions and elec-

trons have a Maxwellian velocity distribution. Only the solutions

are listed here.

For a positively biased probe (V.. > 0)

eV
1 w -

j = 4 neo e [Ci exp V - Ce] (5.1.1)

1 2 i eVe -- n e exp@Vw 4 eo kTi kTi (5.1.2)

where j is the current density and T. is the positive ion temperature.

For a negatively biased probe (Vw < 0)

1 -
j n e [Ci C exp (5.1.3)

S  neo e e exp e

kTe kT (5.1.4)

Notice that the negative ion is not involved in the analy-

sis since its concentration is negligibly small in these altitudes.

5.2 Discussion: 70 Ikm to 82 km

A positively biased probe descending subsonically is consid-

ered here. Between 70 km and 82 km, the probe is operating in a double

transitional regime, i.e., L = XD - . In the absence,of magnetic

field, this is one of the most difficult plasma-body interaction pro-

blems one can encounter.
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In this range of altitudes, neither the electron collection

continuum theory described in the last chapter nor the present colli-

sionless thin sheath solution will give a full description of the probe

characteristic. However, their respective electron density predictions

will be computed and compared in the next chapter.
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CHAPTER VI

THE D-REGION ELECTRON DATA REDUCTION

6.1 Data Reduction by Continuum Theory

A proper reduction of the blunt probe electron data requires a

knowledge of the probe potential at which measurements are made.

This probe potential is needed in checking the applicability of a dif-

fusion layer model, as compared to a collisionless surface layer. The

potential is also needed in the investigation of whether various con-

straints posed in the derivation of the model is met at various alti-

tudes.

Two measured quantities are first discussed. During the flight of

the probe, the derivative of the electron current (I e ) with respect to

the applied potential (VA) between the collector disc and the return

electrode is measured through a scheme using the following relation

which is discussed by Mitchell (50).

dle (Af /At)data

dVA  R (Af/At)
A cal cal

where Real is the resistance of the calibration resistor, (Af/At)ca is

the slope of the straight line drawn through the preflight calibration

ramp, and (Af_/At) data is the corresponding slope of the in-flight data

waveforms. The applied potential, VA, when the (Af_/At)data was ob-

tained was also measured. It is related to the probe potential, V , as

follows:

V V1w VA 1 (6.1.2)

a+ Lr
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where Y and o- is the negative and positive conductivity, respectively,

and L- and L: are the length parameters of the probe and the return
p r

electrode, According to Hale, et al. (51), when the return electrode

is several times larger than the collector plus guard ring, we have

VW 6 A (6.1.3)

In the display of the data thus obtained, instead of

d and Vw. the negative conductivity, o, and the wall electric field,

9 are usually tabulated. The former two can be retrieved by the follow-

ing equations [see (4.3.13) and (4.3.28)]

dl

2ye 2 dVw (6.1.4)eal w

1V
w ira (6.1.5)

In this work, the data of five launches compiled by Burkhard

(46) is recalculated here using the new continuum theory derived. The

thickness of the diffusion layer and the corresponding electron-neutral

mean free path are computed and plotted in Figure 18. A comparison

clearly reveals that the diffusion layer concept is irrelevant and the

layer is replaced by a collisionless surface layer as has been discussed

.last in Chapter IV.

With Eqs. (4.3.50)- (4.3.52) the ambient electron density,

the old and new electron profiles are computed and plotted in Figures

19 to 23. The probe's descending speed, and the pressure of the D-re-

gion for the launch on December 5, 1972, are plotted in Figures 24 and
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25 for reference. For the launch on January 31, 1972, the present

blunt probe data is compared with the result of a combined probe and

propagation experiment performed by the University of Illinois at the

same date. It is shown in Figure 26.

As has been expected, the new electron number density is

smaller than the old prediction below 60 km. This is in agreement

with the physical model since the electron collecting surfaces are now

larger and further away from the probe (mobility layer outer edge) as

compared with the past theory, where the collecting surface is the

outer edge of the diffusion layer. For a larger collecting surface, a

bigger electron current will be collected by the collector disc on the

probe for a given ambient electron density. Thus, for a given mea-

sured current, the electron density predicted will be smaller.

Above 60 km, the new electron density increases for higher

altitudes. It exceeds the old electron density at approximately 70 km

and continues to increase rapidly with altitude. The rapid increase of

the newly predicted electron density above 60 km is due to the drastic

increase of the thickness of the collisionless surface layer, Xe-n'

compared with the thickness of the mobility layer, yB. A larger

Aen/YB implies a smaller n~a/neB and hence the predicted density will

be higher for a given measured current.

The new electron profile above 70 km should be viewed with

caution since at about 70 km, most of the assumption (e.g., continuum

concept), as have been pointed out in Chapter IV, begin to fail. At

about 80 km, where e-n YB a layered geometry as shown in Figure 14b
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no longer exists and the present continuum theory is expected to

collapse above 80 km.

6.2 Data Reduction by Collisionless Theory

The available data between 70 km and 94 km are also reduced by the

collisionless theory (thin sheath theory). The predicted electron

densities are plotted in Figure 27.

The electron density obtained by collisionless theory is consider-

ably higher than that predicted by continuum theory. Naturally, this

is due to the fact that the electron collection surface which is the

thin sheath edge in the collisionless theory is very much smaller than

that in the continuum case. For a given ambient electron density, the

electron current predicted by the collisionless theory will then be

smaller. Thus, for a given measured electron current, the electron

density predicted by the collisionless theory will be considerably

higher than that by continuum theory. It will be noticed that some

data points comparing both continuum and collisionless predictions are

not included in the figure because their values reduced by the collision-

less theory is too large to be appropriate.

In general, between altitude 70 km and 94 km, a continuum theory

tends to underestimate the electron.density while a collisionless theory

will overestimate the electron density. Thus, the actual electron pro-

file in this high altitude as indicated by other well established ex-

perimental results is expected to be within this upper and lower limit.
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CHAPTER VII

CLOSURE

7.1 Summary

The subsonic, parachute-borne electrostatic blunt probe has been

used for a D-region composition study by the Ionosphere Research Lab-

oratory at The Pennsylvania State University. The scope of this work

is to review the past D-region blunt probe theory and to develop a

correct electron collecting, positively biased probe theory.

In the formulation of the basic equations, various nondimensional

parameters have been estimated and discussed. The importance of a

prior approximate knowledge of the quantities (e.g., electron tempera-

ture and density) to be measured was noted. These quantities are

crucial for deriving an analytic solution since they are needed in

ordering various parameters. In considering various characteristic

lengths, electron Larmor radius, the electron perturbed length, and

the electron-neutral mean free path, the magnetic effect on electron

collection could be significant, though it is not included in the

present analysis.

The relatively low D-region electron temperature (2300 K) compared

with the usual plasma condition (30000 K) results in the nondimensional

probe potential (Pw) much greater than unity for typical D-region

probe potentials; this has two results. First, with 'w >> 1, the basic

assumption that << 1 in the classical derivation of the Debye length

is not satisfied; thus, the usual physical implication that the electric

field is negligible at distance outside the Debye length is lost. Sec-

ond, the fact that 6w >> 1 and XD - L shows that the Laplace equation
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is an adequate description of the electric field outside the probe

surface. This referred to as the zero space charge theory, is the

basis for the present analyses for both ion and electron collection.

It was found that a biased probe perturbs the attracted ions

only within a thin region (L (Rd)-1/2 ) on the probe surface, due to

the large convection influence on the ions as compared with the dif-

fusion and mobility effect. In the present case of an incompressible

plasma flow over the probe, Sonin's ion collection theory can be used

inside this thin perturbed region where convection, diffusion and mo-

bility effect all haJe to be considered in the analysis. With some

rocket-borne blunt probe data, it has been demonstrated that the strong

field condition, which is equivalent to the case V(Rd-1 /2) >> (w-

is satisfied in the D-region. Thus, Hoult's diffusion layer model,

which is based on the assumption that the perturned region of O( -1

thick where convection effect can be neglected, is also an adequate

theory for ionic data reduction.

Electron density is perturbed by a positively biased probe to a

much greater extent compared to the perturbation of the ions. This is

due to the inadequate shielding of the probe by the space charges and

the small electron inertia which demeans the convection effect. The

usual thin boundary layer analysis is inapplicable, and we are confront-

ed with the difficult task of solving an elliptic equation (electron

conservation equation) with incomplete knowledge of the boundary condi-

tions. This difficulty is removed by assuming the electric field above

one end of the blunt probe is the same as that above a circular disc

which is obtained by shrinking an ellipsoid to infinitesimal thickness.
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The limiting case of a stationary probe is first considered. A

model based on the available experimental data of the electron drift

velocity versus electric field and pressure is proposed. The nonlinear

behavior of the above data is used to determine the cut-off distance of

the electron collecting region. This model considers only mobility

effect while the diffusion process is not included in the analysis.

With a flow toward the probe, the dependence of electron dynamics

on various processes is examined by observing the dominant terms in

the governing equation at various distances from the probe. Four re-

gions have been identified; they are:the unperturbed outer region, the

convection-mobility dominant region, the mobility dominant region, and

the diffusion mobility region. A simple drift velocity model is pro-

posed. The location of various regions was determined by considering

the relative magnitude of the convection velocity and electron drift

velocity. Electron density variation in the convection-mobility re-

gion, based on a simple numerical computation of the trajectory of the

electrons inside this region, has been found to be negligible. The

D-region blunt probe data also showed that the diffusion layer is not

a relevant concept since this layer was found to be thinner than or

comparable to the electron-neutral mean free path at the corresponding

altitudes. This difficulty was overcome by replacing the diffusion

layer with a collisionless surface layer in the calculation scheme.

The final result of this drift velocity model, which is now

reduced to a purely mobility concept model is

Ie = 3.5 x 106 eo Acol Vw
ap
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This expression is essentially identical to that obtained for a sta-

tionary probe based on experimental data. The similarity of the two

solutions is simply due to the fact that both the drift velocity mo-

del, and the zero velocity model depends only on the mobility concept.

The electron-neutral mean free path is larger than the probe

radius for altitudes above 63 km. Above this altitude, only the col-

lisionless surface layer needs a slight modification in the computation

scheme for electron density ratio, to account for the edge effect. The

above continuum theory begins to deteriorate at 70 km and collapse at

about 80 km due to the failure to meet the constraints imposed during

the development of the model. In general, the new electron density pre-

dicted by the drift velocity is considerably lower than previous results

below 60 km and increases steadily above this altitude.

A collisionless theory based on the thin sheath concept was also

discussed for higher altitudes. The descending velocity of a parachute-

borne blunt probe is hypersonic between the altitudes ranging from 300

km to 80 km. For a positively biased probe, the convection velocity of

the electron can be neglected compared to its thermal velocity at the

sheath edge. A thin sheath solution is thus applicable in the collision-

less regime. Electron density obtained by the collisionless theory in

the transition regime (70 - 90 km) predicts values that are considerably

higher than those predicted by continuum theory.

7.2 Suggestions for Further Research

On the basis of the work done here, further research would be fruit-

ful in the following areas:

(a) The absolute values electron current to the probe are not

included in the given data. A successful
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attempt to obtain the current will allow an electron data

reduction by the current equation which can serve as a

check to the present prediction.

(b) Extension of the foregoing analysis to include the geomag-

netic effect on the electron dynamics in various layers.

(c) Investigation of the feasibility of using a parachute-borne

spherical probe. The spherical probe theory in a quiscent

plasma in all three regimes, (continuum, transitional and

collisionless), has been fairly well explored.. A perturba-

tion technique should not be too difficult to set up to

account for the presently descending probe.

(d) Investigation to obtain reliably the probe potential at which

measurements are made.

(e) Laboratory measurements of the mobility and the diffusion

coefficient of the D-region dominant ions are needed for a

better ionic data reduction. A larger range of E/p with the

electron drift velocity in a D-region simulated environment

will give a better prediction of the electron density.
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APPENDIX A

SOLUTION OF THE ELECTRIC BOUNDARY LAYER EQUATION



127

The negative ion electric boundary layer dimensional equation

from Eq. (4.2.12) is

an an a n an
- -- e aV -

Pu + pv = pD - T
ax yay2 kT e  ay ay (A.1)

with electric field given by

-2V
aV w
ay 7Ta (A.2)

and the boundary conditions

n (y - o) = 0 (A.3a)

n (y = o) = n- (A.3b)

where n, is the negative ion density, (u, v) is the flow velocities in-

side the electric boundary layer, D is the ion diffusion coefficient,

p is the neutral gas density, e is the electron charge, Te is the

electron temperature, k is the Boltzman constant, V is the potential
w

of the prove, and X is the ratio of the negative ion density and elec-

tron density with both density evaluated far away from the probe.

The flow velocity (u, v) naturally is governed by the viscous

boundary layer momentum equation which is

au + u 1 dub + 2u
ax ay P x ay 2  (A.4)

where V is the kinematic viscosity and ub is the inviscid stagnation

point flow velocity which is a linear function of the distance x from

stagnation point (52), that is
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Ub gx (A.5)

where g, the velocity gradient, experimentally determined, is avail-

able in the literature (53).

Assuming that the density and viscosity are invarient, the Lees-

Dorodnitsyn transformations, available in standard text (54), are

used to reduce Eq. (A.1) into an ordinary differential equation. The

transformations are

2 x 2 4
(x) b  x vg (A.6a)

2 x

n(x,y) = ub2 xdy = pg x
(2s) (2s)/2 (A.6b)

where r) is often referred to as the boundary layer coordinate.

The usual stream function u is also nondimensionalized as

f= -

,r-,(A.7)

and

pur (A.8a)

x -y (A.8b)

where y, the radial distance from the center of symmetry, equals to x in

the present case. After some algebraic manipulation (54), we obtain

some useful operators.
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a a 2 2a a a
ax V Pay % vX a as ar

f a (A.9a)
2. an /

2 22
S 2 p ub x a2

ay2 2J an2 (A.9b)

where prime represents differentiation with respect to n.

Substitute the operators into Eq. (A.1), and after some cancella-

tion, we obtain

n, + Sc f kT ( y (2aV n_11'2 0 (A.10)

2
where Res = gaV

Remembering that we are considering the region inside the thin

electric boundary layer, the field essentially is a constant and is

given by Eq. (A.2). Thus the coefficient

b ea V 1 1/2
kT e ay J2Res

is a dimensionless constant. The boundary conditions are

n ( = o) = 0 (A.11a)

n- (4 = o) = n- o  (A. Ilb)

The solution of Eq. (A.10) is
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n- () = n (1) exp (b-Scf) dln" dn
-o o (A.12)

Substituting Eq. (A.11b) into Eq. (A.12), we have

n -o
n- (o)

Jexp (b-Scf) dn" d (A.1

Applying the same transformation to the momentum equation, Eq.

(A.4) we obtain

f" + ff" 2s dub 2 1(A.14)
Ub ds

Dropping the pressure term, an approximation which has been made

by Talbot (20) and Sonin (26), we obtain

f9Q + foP f = 0 (A.15)

with boundary conditions

f(o) * f'(o) = 0 (A.16a)

f'(.) = 1 (A.16b)

Now, the numerical solution of Eq. (A.15) shows that the approxi-

mate solution f = 0, which always overestimates the true value of f

slightly, is a good approximation. It allows an explicit analytic

solution that will reveal the relative importance of the flow and

electric field effect. With this simplification, Eq. (A.13) becomes
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1 2Sc (exp - 2 /4ScRem)
n" (0) =

'1 1/2(A.17)
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